
BigchainDB Server Documentation
Release 1.0.1

BigchainDB Contributors

Jul 14, 2017

Contents

1 Introduction 1

2 Quickstart 3

3 Production Nodes 5

4 Clusters 13

5 Production Deployment Template 15

6 Develop & Test BigchainDB Server 49

7 Settings & CLI 53

8 The HTTP Client-Server API 65

9 The WebSocket Event Stream API 83

10 Drivers & Tools 85

11 Data Models 87

12 Transaction Schema 93

13 Vote Schema 97

14 Release Notes 99

15 Appendices 101

Python Module Index 149

HTTP Routing Table 151

i

ii

CHAPTER 1

Introduction

This is the documentation for BigchainDB Server, the BigchainDB software that one runs on servers (but not on
clients).

If you want to use BigchainDB Server, then you should first understand what BigchainDB is, plus some of the spe-
cialized BigchaindB terminology. You can read about that in the overall BigchainDB project documentation.

Note that there are a few kinds of nodes:

• A dev/test node is a node created by a developer working on BigchainDB Server, e.g. for testing new or changed
code. A dev/test node is typically run on the developer’s local machine.

• A bare-bones node is a node deployed in the cloud, either as part of a testing cluster or as a starting point before
upgrading the node to be production-ready.

• A production node is a node that is part of a consortium’s BigchainDB cluster. A production node has the most
components and requirements.

Setup Instructions for Various Cases

• Set up a local stand-alone BigchainDB node for learning and experimenting: Quickstart

• Set up and run a local dev/test node for developing and testing BigchainDB Server

• Set up and run a BigchainDB cluster

There are some old RethinkDB-based deployment instructions as well:

• Deploy a bare-bones RethinkDB-based node on Azure

• Deploy a bare-bones RethinkDB-based node on any Ubuntu machine with Ansible

• Deploy a RethinkDB-based testing cluster on AWS

Instructions for setting up a client will be provided once there’s a public test net.

1

https://docs.bigchaindb.com/en/latest/index.html

BigchainDB Server Documentation, Release 1.0.1

Can I Help?

Yes! BigchainDB is an open-source project; we welcome contributions of all kinds. If you want to request a feature,
file a bug report, make a pull request, or help in some other way, please see the CONTRIBUTING.md file.

2 Chapter 1. Introduction

https://github.com/bigchaindb/bigchaindb/blob/master/CONTRIBUTING.md

CHAPTER 2

Quickstart

This page has instructions to set up a single stand-alone BigchainDB node for learning or experimenting. Instructions
for other cases are elsewhere. We will assume you’re using Ubuntu 16.04 or similar. If you’re not using Linux, then
you might try running BigchainDB with Docker.

A. Install MongoDB as the database backend. (There are other options but you can ignore them for now.)

Install MongoDB Server 3.4+

B. To run MongoDB with default database path i.e. /data/db, open a Terminal and run the following command:

$ sudo mkdir -p /data/db

C. Assign rwx(read/write/execute) permissions to the user for default database directory:

$ sudo chmod -R 700 /data/db

D. Run MongoDB:

$ sudo mongod --replSet=bigchain-rs

E. Ubuntu 16.04 already has Python 3.5, so you don’t need to install it, but you do need to install some other things:

$ sudo apt-get update
$ sudo apt-get install g++ python3-dev libffi-dev build-essential libssl-dev

F. Get the latest version of pip and setuptools:

$ sudo apt-get install python3-pip
$ sudo pip3 install --upgrade pip setuptools

G. Install the bigchaindb Python package from PyPI:

$ sudo pip3 install bigchaindb

In case you are having problems with installation or package/module versioning, please upgrade the relevant packages
on your host by running one the following commands:

3

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

BigchainDB Server Documentation, Release 1.0.1

$ sudo pip3 install [packageName]==[packageVersion]

OR

$ sudo pip3 install [packageName] --upgrade

H. Configure BigchainDB Server:

$ bigchaindb -y configure mongodb

I. Run BigchainDB Server:

$ bigchaindb start

You now have a running BigchainDB Server and can post transactions to it. One way to do that is to use the
BigchainDB Python Driver.

Install the BigchainDB Python Driver (link)

4 Chapter 2. Quickstart

https://docs.bigchaindb.com/projects/py-driver/en/latest/quickstart.html

CHAPTER 3

Production Nodes

Production Node Assumptions

Be sure you know the key BigchainDB terminology:

• BigchainDB node, BigchainDB cluster and BigchainDB consortum

• dev/test node, bare-bones node and production node

We make some assumptions about production nodes:

1. Production nodes use MongoDB, not RethinkDB.

2. Each production node is set up and managed by an experienced professional system administrator or a team of
them.

3. Each production node in a cluster is managed by a different person or team.

You can use RethinkDB when building prototypes, but we don’t advise or support using it in production.

We don’t provide a detailed cookbook explaining how to secure a server, or other things that a sysadmin should know.
We do provide some templates, but those are just starting points.

Production Node Components

A production BigchainDB node must include:

• BigchainDB Server

• MongoDB Server 3.4+ (mongod)

• Scalable storage for MongoDB

It could also include several other components, including:

• NGINX or similar, to provide authentication, rate limiting, etc.

• An NTP daemon running on all machines running BigchainDB Server or mongod, and possibly other machines

5

https://docs.bigchaindb.com/en/latest/terminology.html

BigchainDB Server Documentation, Release 1.0.1

• Not MongoDB Automation Agent. It’s for automating the deployment of an entire MongoDB cluster, not just
one MongoDB node within a cluster.

• MongoDB Monitoring Agent

• MongoDB Backup Agent

• Log aggregation software

• Monitoring software

• Maybe more

The relationship between the main components is illustrated below. Note that BigchainDB Server must be able to
communicate with the primary MongoDB instance, and any of the MongoDB instances might be the primary, so
BigchainDB Server must be able to communicate with all the MongoDB instances. Also, all MongoDB instances
must be able to communicate with each other.

6 Chapter 3. Production Nodes

BigchainDB Server Documentation, Release 1.0.1

Production Node Requirements

This page is about the requirements of BigchainDB Server. You can find the requirements of MongoDB, NGINX,
your NTP daemon, your monitoring software, and other production node components in the documentation for that
software.

OS Requirements

BigchainDB Server requires Python 3.5+ and Python 3.5+ will run on any modern OS, but we recommend using an
LTS version of Ubuntu Server or a similarly server-grade Linux distribution.

Don’t use macOS (formerly OS X, formerly Mac OS X), because it’s not a server-grade operating system. Also,
BigchaindB Server uses the Python multiprocessing package and some functionality in the multiprocessing package
doesn’t work on Mac OS X.

General Considerations

BigchainDB Server runs many concurrent processes, so more RAM and more CPU cores is better.

As mentioned on the page about production node components, every machine running BigchainDB Server should be
running an NTP daemon.

Set Up and Run a Cluster Node

This is a page of general guidelines for setting up a production BigchainDB node. Before continuing, make sure
you’ve read the pages about production node assumptions, components and requirements.

Note: These are just guidelines. You can modify them to suit your needs. For example, if you want to initialize the
MongoDB replica set before installing BigchainDB, you can do that. If you’d prefer to use Docker and Kubernetes,
you can (and we have a template). We don’t cover all possible setup procedures here.

Security Guidelines

There are many articles, websites and books about securing servers, virtual machines, networks, etc. Consult those.
There are some notes on BigchainDB-specific firewall setup in the Appendices.

Sync Your System Clock

A BigchainDB node uses its system clock to generate timestamps for blocks and votes, so that clock should be kept
in sync with some standard clock(s). The standard way to do that is to run an NTP daemon (Network Time Protocol
daemon) on the node.

MongoDB also recommends having an NTP daemon running on all MongoDB nodes.

NTP is a standard protocol. There are many NTP daemons implementing it. We don’t recommend a particular one.
On the contrary, we recommend that different nodes in a cluster run different NTP daemons, so that a problem with
one daemon won’t affect all nodes.

Please see the notes on NTP daemon setup in the Appendices.

3.3. Production Node Requirements 7

https://docs.python.org/3.5/using/index.html
https://www.ubuntu.com/server
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.Queue.qsize
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.Queue.qsize

BigchainDB Server Documentation, Release 1.0.1

Set Up Storage for MongoDB

We suggest you set up a separate storage device (partition, RAID array, or logical volume) to store the data in the
MongoDB database. Here are some questions to ask:

• How easy will it be to add storage in the future? Will I have to shut down my server?

• How big can the storage get? (Remember that RAID can be used to make several physical drives look like one.)

• How fast can it read & write data? How many input/output operations per second (IOPS)?

• How does IOPS scale as more physical hard drives are added?

• What’s the latency?

• What’s the reliability? Is there replication?

• What’s in the Service Level Agreement (SLA), if applicable?

• What’s the cost?

There are many options and tradeoffs.

Consult the MongoDB documentation for its recommendations regarding storage hardware, software and settings, e.g.
in the MongoDB Production Notes.

Install and Run MongoDB

• Install MongoDB 3.4+. (BigchainDB only works with MongoDB 3.4+.)

• Run MongoDB (mongod)

Install BigchainDB Server

Install BigchainDB Server Dependencies

Before you can install BigchainDB Server, you must install its OS-level dependencies and you may have to install
Python 3.5+.

How to Install BigchainDB Server with pip

BigchainDB is distributed as a Python package on PyPI so you can install it using pip. First, make sure you have an
up-to-date Python 3.5+ version of pip installed:

pip -V

If it says that pip isn’t installed, or it says pip is associated with a Python version less than 3.5, then you must install
a pip version associated with Python 3.5+. In the following instructions, we call it pip3 but you may be able to use
pip if that refers to the same thing. See the pip installation instructions.

On Ubuntu 16.04, we found that this works:

sudo apt-get install python3-pip

That should install a Python 3 version of pip named pip3. If that didn’t work, then another way to get pip3 is to
do sudo apt-get install python3-setuptools followed by sudo easy_install3 pip.

You can upgrade pip (pip3) and setuptools to the latest versions using:

8 Chapter 3. Production Nodes

https://en.wikipedia.org/wiki/RAID
https://docs.mongodb.com/manual/administration/production-notes/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/reference/program/mongod/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/

BigchainDB Server Documentation, Release 1.0.1

pip3 install --upgrade pip setuptools
pip3 -V

Now you can install BigchainDB Server using:

pip3 install bigchaindb

(If you’re not in a virtualenv and you want to install bigchaindb system-wide, then put sudo in front.)

Note: You can use pip3 to upgrade the bigchaindb package to the latest version using pip3 install
--upgrade bigchaindb.

How to Install BigchainDB Server from Source

If you want to install BitchainDB from source because you want to use the very latest bleeding-edge code, clone the
public repository:

git clone git@github.com:bigchaindb/bigchaindb.git
cd bigchaindb
python setup.py install

Configure BigchainDB Server

Start by creating a default BigchainDB config file for a MongoDB backend:

bigchaindb -y configure mongodb

(There’s documentation for the bigchaindb command is in the section on the BigchainDB Command Line Interface
(CLI).)

Edit the created config file by opening $HOME/.bigchaindb (the created config file) in your text editor:

• Change "server": {"bind": "localhost:9984", ... } to "server": {"bind":
"0.0.0.0:9984", ... }. This makes it so traffic can come from any IP address to port 9984 (the HTTP
Client-Server API port).

• Change "keyring": [] to "keyring": ["public_key_of_other_node_A",
"public_key_of_other_node_B", "..."] i.e. a list of the public keys of all the other nodes
in the cluster. The keyring should not include your node’s public key.

• Ensure that database.host and database.port are set to the hostname and port of your MongoDB
instance. (The port is usually 27017, unless you changed it.)

For more information about the BigchainDB config file, see the page about the BigchainDB configuration settings.

Get All Other Nodes to Update Their Keyring

All other BigchainDB nodes in the cluster must add your new node’s public key to their BigchainDB keyring. Cur-
rently, the only way to get BigchainDB Server to “notice” a changed keyring is to shut it down and start it back up
again (with the new keyring).

3.4. Set Up and Run a Cluster Node 9

BigchainDB Server Documentation, Release 1.0.1

Maybe Update the MongoDB Replica Set

If this isn’t the first node in the BigchainDB cluster, then someone with an existing BigchainDB node (not you)
must add your MongoDB instance to the MongoDB replica set. They can do so (on their node) using:

bigchaindb add-replicas your-mongod-hostname:27017

where they must replace your-mongod-hostname with the actual hostname of your MongoDB instance, and they
may have to replace 27017 with the actual port.

Start BigchainDB

Warning: If you’re not deploying the first node in the BigchainDB cluster, then don’t start BigchainDB before
your MongoDB instance has been added to the MongoDB replica set (as outlined above).

See warning above
bigchaindb start

Using a Reverse Proxy

You may want to:

• rate limit inbound HTTP requests,

• authenticate/authorize inbound HTTP requests,

• block requests with an HTTP request body that’s too large, or

• enable HTTPS (TLS) between your users and your node.

While we could have built all that into BigchainDB Server, we didn’t, because you can do all that (and more) using a
reverse proxy such as NGINX or HAProxy. (You would put it in front of your BigchainDB Server, so that all inbound
HTTP requests would arrive at the reverse proxy before maybe being proxied onwards to your BigchainDB Server.)
For detailed instructions, see the documentation for your reverse proxy.

Below, we note how a reverse proxy can be used to do some BigchainDB-specific things.

You may also be interested in our NGINX configuration file template (open source, on GitHub).

Enforcing a Max Transaction Size

The BigchainDB HTTP API has several endpoints, but only one of them, the POST /transactions endpoint,
expects a non-empty HTTP request body: the transaction (JSON) being submitted by the user.

If you want to enforce a maximum-allowed transaction size (discarding any that are larger), then you can
do so by configuring a maximum request body size in your reverse proxy. For example, NGINX has the
client_max_body_size configuration setting. You could set it to 15 kB with the following line in your NG-
INX config file:

client_max_body_size 15k;

For more information, see the NGINX docs about client_max_body_size.

Note: By enforcing a maximum transaction size, you indirectly enforce a maximum crypto-conditions complexity.

Aside: Why 15 kB?

10 Chapter 3. Production Nodes

https://github.com/bigchaindb/nginx_3scale/blob/master/nginx.conf.template
https://nginx.org/en/docs/http/ngx_http_core_module.html#client_max_body_size
https://github.com/bigchaindb/bigchaindb/issues/356#issuecomment-288085251

BigchainDB Server Documentation, Release 1.0.1

Both RethinkDB and MongoDB have a maximum document size of 16 MB. In BigchainDB, the biggest documents
are the blocks. A BigchainDB block can contain up to 1000 transactions, plus some other data (e.g. the timestamp). If
we ignore the other data as negligible relative to all the transactions, then a block of size 16 MB will have an average
transaction size of (16 MB)/1000 = 16 kB. Therefore by limiting the max transaction size to 15 kB, you can be fairly
sure that no blocks will ever be bigger than 16 MB.

Note: Technically, the documents that MongoDB stores aren’t the JSON that BigchainDB users think of; they’re JSON
converted to BSON. Moreover, one can use GridFS with MongoDB to store larger documents. Therefore the above
calculation shoud be seen as a rough guide, not the last word.

3.5. Using a Reverse Proxy 11

https://rethinkdb.com/limitations/
https://docs.mongodb.com/manual/reference/limits/#limit-bson-document-size
https://docs.mongodb.com/manual/core/gridfs/

BigchainDB Server Documentation, Release 1.0.1

12 Chapter 3. Production Nodes

CHAPTER 4

Clusters

A BigchainDB Cluster is a set of connected BigchainDB Nodes, managed by a BigchainDB Consortium (i.e. an
organization). Those terms are defined in the BigchainDB Terminology page.

Consortium Structure & Governance

The consortium might be a company, a foundation, a cooperative, or some other form of organization. It must make
many decisions, e.g. How will new members be added? Who can read the stored data? What kind of data will be
stored? A governance process is required to make those decisions, and therefore one of the first steps for any new
consortium is to specify its governance process (if one doesn’t already exist). This documentation doesn’t explain how
to create a consortium, nor does it outline the possible governance processes.

It’s worth noting that the decentralization of a BigchainDB cluster depends, to some extent, on the decentralization of
the associated consortium. See the pages about decentralization and node diversity.

Relevant Technical Documentation

There are some pages and sections that will be of particular interest to anyone building or managing a BigchainDB
cluster. In particular:

• the page about how to set up and run a cluster node,

• our production deployment template, and

• our old RethinkDB-based AWS deployment template.

Cluster DNS Records and SSL Certificates

We now describe how we set up the external (public-facing) DNS records for a BigchainDB cluster. Your consortium
may opt to do it differently. There were several goals:

13

https://docs.bigchaindb.com/en/latest/terminology.html
https://en.wikipedia.org/wiki/Organizational_structure
https://docs.bigchaindb.com/en/latest/decentralized.html
https://docs.bigchaindb.com/en/latest/diversity.html

BigchainDB Server Documentation, Release 1.0.1

• Allow external users/clients to connect directly to any BigchainDB node in the cluster (over the internet), if they
want.

• Each BigchainDB node operator should get an SSL certificate for their BigchainDB node, so that their
BigchainDB node can serve the BigchainDB HTTP API via HTTPS. (The same certificate might also be used
to serve the WebSocket API.)

• There should be no sharing of SSL certificates among BigchainDB node operators.

• Optional: Allow clients to connect to a “random” BigchainDB node in the cluster at one particular domain (or
subdomain).

Node Operator Responsibilities

1. Register a domain (or use one that you already have) for your BigchainDB node. You can use a subdomain if you
like. For example, you might opt to use abc-org73.net, api.dynabob8.io or figmentdb3.ninja.

2. Get an SSL certificate for your domain or subdomain, and properly install it in your node (e.g. in your NGINX
instance).

3. Create a DNS A Record mapping your domain or subdomain to the public IP address of your node (i.e. the one
that serves the BigchainDB HTTP API).

Consortium Responsibilities

Optional: The consortium managing the BigchainDB cluster could register a domain name and set up CNAME records
mapping that domain name (or one of its subdomains) to each of the nodes in the cluster. For example, if the consortium
registered bdbcluster.io, they could set up CNAME records like the following:

• CNAME record mapping api.bdbcluster.io to abc-org73.net

• CNAME record mapping api.bdbcluster.io to api.dynabob8.io

• CNAME record mapping api.bdbcluster.io to figmentdb3.ninja

14 Chapter 4. Clusters

CHAPTER 5

Production Deployment Template

This section outlines how we deploy production BigchainDB nodes and clusters on Microsoft Azure using Kubernetes.
We improve it constantly. You may choose to use it as a template or reference for your own deployment, but we make
no claim that it is suitable for your purposes. Feel free change things to suit your needs or preferences.

Overview

This page summarizes the steps we go through to set up a production BigchainDB cluster. We are constantly improving
them. You can modify them to suit your needs.

Things the Managing Organization Must Do First

1. Set Up a Self-Signed Certificate Authority

We use SSL/TLS and self-signed certificates for MongoDB authentication (and message encryption). The certificates
are signed by the organization managing the cluster. If your organization already has a process for signing certificates
(i.e. an internal self-signed certificate authority [CA]), then you can skip this step. Otherwise, your organization must
set up its own self-signed certificate authority.

2. Register a Domain and Get an SSL Certificate for It

The BigchainDB APIs (HTTP API and WebSocket API) should be served using TLS, so the organization running the
cluster should choose an FQDN for their API (e.g. api.organization-x.com), register the domain name, and buy an
SSL/TLS certificate for the FQDN.

Things Each Node Operator Must Do

Every MongoDB instance in the cluster must have a unique (one-of-a-kind) name. Ask the organization managing your
cluster if they have a standard way of naming instances in the cluster. For example, maybe they assign a unique number

15

BigchainDB Server Documentation, Release 1.0.1

to each node, so that if you’re operating node 12, your MongoDB instance would be named mdb-instance-12.
Similarly, other instances must also have unique names in the cluster.

1. Name of the MongoDB instance (mdb-instance-*)

2. Name of the BigchainDB instance (bdb-instance-*)

3. Name of the NGINX instance (ngx-instance-*)

4. Name of the MongoDB monitoring agent instance (mdb-mon-instance-*)

5. Name of the MongoDB backup agent instance (mdb-bak-instance-*)

Generate four keys and corresponding certificate signing requests (CSRs):

1. Server Certificate (a.k.a. Member Certificate) for the MongoDB instance

2. Client Certificate for BigchainDB Server to identify itself to MongoDB

3. Client Certificate for MongoDB Monitoring Agent to identify itself to MongoDB

4. Client Certificate for MongoDB Backup Agent to identify itself to MongoDB

Ask the managing organization to use its self-signed CA to sign those four CSRs. They should send you:

• Four certificates (one for each CSR you sent them).

• One ca.crt file: their CA certificate.

• One crl.pem file: a certificate revocation list.

For help, see the pages:

• How to Generate a Server Certificate for MongoDB

• How to Generate a Client Certificate for MongoDB

Every node in a BigchainDB cluster needs its own BigchainDB keypair (i.e. a public key and corresponding private
key). You can generate a BigchainDB keypair for your node, for example, using the BigchainDB Python Driver.

from bigchaindb_driver.crypto import generate_keypair
print(generate_keypair())

Share your BigchaindB public key with all the other nodes in the BigchainDB cluster. Don’t share your private key.

Get the BigchainDB public keys of all the other nodes in the cluster. That list of public keys is known as the
BigchainDB “keyring.”

Make up an FQDN for your BigchainDB node (e.g. mynode.mycorp.com). Make sure you’ve registered the
associated domain name (e.g. mycorp.com), and have an SSL certificate for the FQDN. (You can get an SSL
certificate from any SSL certificate provider.)

Ask the managing organization for the FQDN used to serve the BigchainDB APIs (e.g. api.orgname.net or
bdb.clustername.com) and for a copy of the associated SSL/TLS certificate. Also, ask for the user name to use
for authenticating to MongoDB.

If the cluster uses 3scale for API authentication, monitoring and billing, you must ask the managing organization for
all relevant 3scale credentials.

If the cluster uses MongoDB Cloud Manager for monitoring and backup, you must ask the managing organization for
the Group ID and the Agent API Key. (Each Cloud Manager “group” has its own Group ID. A Group ID
can contain a number of Agent API Key s. It can be found under Settings - Group Settings. It was recently added
to the Cloud Manager to allow easier periodic rotation of the Agent API Key with a constant Group ID)

Deploy a Kubernetes cluster on Azure.

16 Chapter 5. Production Deployment Template

http://docs.bigchaindb.com/projects/py-driver/en/latest/index.html

BigchainDB Server Documentation, Release 1.0.1

You can now proceed to set up your BigchainDB node based on whether it is the first node in a new cluster or a node
that will be added to an existing cluster.

How to Set Up a Self-Signed Certificate Authority

This page enumerates the steps we use to set up a self-signed certificate authority (CA). This is something that only
needs to be done once per cluster, by the organization managing the cluster, i.e. the CA is for the whole cluster. We
use Easy-RSA.

Step 1: Install & Configure Easy-RSA

First create a directory for the CA and cd into it:

mkdir bdb-cluster-ca

cd bdb-cluster-ca

Then install and configure Easy-RSA in that directory.

Step 2: Create a Self-Signed CA

You can create a self-signed CA by going to the bdb-cluster-ca/easy-rsa-3.0.1/easyrsa3 directory
and using:

./easyrsa init-pki

./easyrsa build-ca

You will also be asked to enter a PEM pass phrase (for encrypting the ca.key file). Make sure to securely store that
PEM pass phrase. If you lose it, you won’t be able to add or remove entities from your PKI infrastructure in the future.

You will be prompted to enter the Distinguished Name (DN) information for this CA. For each field, you can accept
the default value [in brackets] by pressing Enter.

Warning: Don’t accept the default value of OU (IT). Instead, enter the value ROOT-CA.

While Easy-RSA CA is a valid and acceptable Common Name, you should probably enter a name based on the name
of the managing organization, e.g. Omega Ledger CA.

Tip: You can get help with the easyrsa command (and its subcommands) by using the subcommand ./easyrsa
help

Step 3: Create an Intermediate CA

TODO

5.2. How to Set Up a Self-Signed Certificate Authority 17

BigchainDB Server Documentation, Release 1.0.1

Step 4: Generate a Certificate Revocation List

You can generate a Certificate Revocation List (CRL) using:

./easyrsa gen-crl

You will need to run this command every time you revoke a certificate. The generated crl.pem needs to be uploaded
to your infrastructure to prevent the revoked certificate from being used again.

Step 5: Secure the CA

The security of your infrastructure depends on the security of this CA.

• Ensure that you restrict access to the CA and enable only legitimate and required people to sign certificates and
generate CRLs.

• Restrict access to the machine where the CA is hosted.

• Many certificate providers keep the CA offline and use a rotating intermediate CA to sign and revoke certificates,
to mitigate the risk of the CA getting compromised.

• In case you want to destroy the machine where you created the CA (for example, if this was set up on a cloud
provider instance), you can backup the entire easyrsa directory to secure storage. You can always restore it
to a trusted instance again during the times when you want to sign or revoke certificates. Remember to backup
the directory after every update.

How to Generate a Server Certificate for MongoDB

This page enumerates the steps we use to generate a server certificate for a MongoDB instance. A server certificate is
also referred to as a “member certificate” in the MongoDB documentation. We use Easy-RSA.

Step 1: Install & Configure Easy–RSA

First create a directory for the server certificate (member cert) and cd into it:

mkdir member-cert

cd member-cert

Then install and configure Easy-RSA in that directory.

Step 2: Create the Server Private Key and CSR

You can create the server private key and certificate signing request (CSR) by going into the directory
member-cert/easy-rsa-3.0.1/easyrsa3 and using something like:

./easyrsa init-pki

./easyrsa --req-cn=mdb-instance-0 --subject-alt-name=DNS:localhost,DNS:mdb-instance-0
→˓gen-req mdb-instance-0 nopass

18 Chapter 5. Production Deployment Template

BigchainDB Server Documentation, Release 1.0.1

You should replace the Common Name (mdb-instance-0 above) with the correct name for your MongoDB in-
stance in the cluster, e.g. mdb-instance-5 or mdb-instance-12. (This name is decided by the organization
managing the cluster.)

You will be prompted to enter the Distinguished Name (DN) information for this certificate. For each field, you can
accept the default value [in brackets] by pressing Enter.

Warning: Don’t accept the default value of OU (IT). Instead, enter the value MongoDB-Instance.

Aside: You need to provide the DNS:localhost SAN during certificate generation for using the localhost
exception in the MongoDB instance. All certificates can have this attribute without compromising security as the
localhost exception works only the first time.

Step 3: Get the Server Certificate Signed

The CSR file created in the last step should be located in pki/reqs/mdb-instance-0.req (where the integer
0 may be different for you). You need to send it to the organization managing the cluster so that they can use their CA
to sign the request. (The managing organization should already have a self-signed CA.)

If you are the admin of the managing organization’s self-signed CA, then you can import the CSR and use Easy-RSA
to sign it. Go to your bdb-cluster-ca/easy-rsa-3.0.1/easyrsa3/ directory and do something like:

./easyrsa import-req mdb-instance-0.req mdb-instance-0

./easyrsa --subject-alt-name=DNS:localhost,DNS:mdb-instance-0 sign-req server mdb-
→˓instance-0

Once you have signed it, you can send the signed certificate and the CA certificate back to the requestor. The files are
pki/issued/mdb-instance-0.crt and pki/ca.crt.

Step 4: Generate the Consolidated Server PEM File

MongoDB requires a single, consolidated file containing both the public and private keys.

cat mdb-instance-0.crt mdb-instance-0.key > mdb-instance-0.pem

How to Generate a Client Certificate for MongoDB

This page enumerates the steps we use to generate a client certificate to be used by clients who want to connect to a
TLS-secured MongoDB cluster. We use Easy-RSA.

Step 1: Install and Configure Easy-RSA

First create a directory for the client certificate and cd into it:

mkdir client-cert

cd client-cert

Then install and configure Easy-RSA in that directory.

5.4. How to Generate a Client Certificate for MongoDB 19

BigchainDB Server Documentation, Release 1.0.1

Step 2: Create the Client Private Key and CSR

You can create the client private key and certificate signing request (CSR) by going into the directory client-cert/
easy-rsa-3.0.1/easyrsa3 and using:

./easyrsa init-pki

./easyrsa gen-req bdb-instance-0 nopass

You should change the Common Name (e.g. bdb-instance-0) to a value that reflects what the client certificate
is being used for, e.g. mdb-mon-instance-3 or mdb-bak-instance-4. (The final integer is specific to your
BigchainDB node in the BigchainDB cluster.)

You will be prompted to enter the Distinguished Name (DN) information for this certificate. For each field, you can
accept the default value [in brackets] by pressing Enter.

Warning: Don’t accept the default value of OU (IT). Instead, enter the value BigchainDB-Instance,
MongoDB-Mon-Instance or MongoDB-Backup-Instance as appropriate.

Aside: The nopass option means “do not encrypt the private key (default is encrypted)”. You can get help with the
easyrsa command (and its subcommands) by using the subcommand ./easyrsa help.

Step 3: Get the Client Certificate Signed

The CSR file created in the previous step should be located in pki/reqs/bdb-instance-0.req (or whatever
Common Name you used in the gen-req command above). You need to send it to the organization managing the
cluster so that they can use their CA to sign the request. (The managing organization should already have a self-signed
CA.)

If you are the admin of the managing organization’s self-signed CA, then you can import the CSR and use Easy-RSA
to sign it. Go to your bdb-cluster-ca/easy-rsa-3.0.1/easyrsa3/ directory and do something like:

./easyrsa import-req bdb-instance-0.req bdb-instance-0

./easyrsa sign-req client bdb-instance-0

Once you have signed it, you can send the signed certificate and the CA certificate back to the requestor. The files are
pki/issued/bdb-instance-0.crt and pki/ca.crt.

Step 4: Generate the Consolidated Client PEM File

MongoDB requires a single, consolidated file containing both the public and private keys.

cat bdb-instance-0.crt bdb-instance-0.key > bdb-instance-0.pem

How to Revoke an SSL/TLS Certificate

This page enumerates the steps we take to revoke a self-signed SSL/TLS certificate in a cluster. It can only be done by
someone with access to the self-signed CA associated with the cluster’s managing organization.

20 Chapter 5. Production Deployment Template

BigchainDB Server Documentation, Release 1.0.1

Step 1: Revoke a Certificate

Since we used Easy-RSA version 3 to set up the CA, we use it to revoke certificates too.

Go to the following directory (associated with the self-signed CA): .../bdb-cluster-ca/easy-rsa-3.
0.1/easyrsa3. You need to be aware of the file name used to import the certificate using the ./easyrsa
import-req before. Run the following command to revoke a certificate:

./easyrsa revoke <filename>

This will update the CA database with the revocation details. The next step is to use the updated database to issue an
up-to-date certificate revocation list (CRL).

Step 2: Generate a New CRL

Generate a new CRL for your infrastructure using:

./easyrsa gen-crl

The generated crl.pem file needs to be uploaded to your infrastructure to prevent the revoked certificate from being
used again.

In particlar, the generated crl.pem file should be sent to all BigchainDB node operators in your BigchainDB cluster,
so that they can update it in their MongoDB instance and their BigchainDB Server instance.

Template: Deploy a Kubernetes Cluster on Azure

A BigchainDB node can be run inside a Kubernetes cluster. This page describes one way to deploy a Kubernetes
cluster on Azure.

Step 1: Get a Pay-As-You-Go Azure Subscription

Microsoft Azure has a Free Trial subscription (at the time of writing), but it’s too limited to run an advanced
BigchainDB node. Sign up for a Pay-As-You-Go Azure subscription via the Azure website.

You may find that you have to sign up for a Free Trial subscription first. That’s okay: you can have many subscriptions.

Step 2: Create an SSH Key Pair

You’ll want an SSH key pair so you’ll be able to SSH to the virtual machines that you’ll deploy in the next step. (If
you already have an SSH key pair, you could reuse it, but it’s probably a good idea to make a new SSH key pair for
your Kubernetes VMs and nothing else.)

See the page about how to generate a key pair for SSH.

Step 3: Deploy an Azure Container Service (ACS)

It’s possible to deploy an Azure Container Service (ACS) from the Azure Portal (i.e. online in your web browser) but
it’s actually easier to do it using the Azure Command-Line Interface (CLI).

Microsoft has instructions to install the Azure CLI 2.0 on most common operating systems. Do that.

5.6. Template: Deploy a Kubernetes Cluster on Azure 21

https://kubernetes.io/
https://azure.microsoft.com
https://portal.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-az-cli2

BigchainDB Server Documentation, Release 1.0.1

If you already have the Azure CLI installed, you may want to update it.

Warning: az component update isn’t supported if you installed the CLI using some of Microsoft’s pro-
vided installation instructions. See the Microsoft docs for update instructions.

Next, login to your account using:

$ az login

It will tell you to open a web page and to copy a code to that page.

If the login is a success, you will see some information about all your subscriptions, including the one that is currently
enabled ("state": "Enabled"). If the wrong one is enabled, you can switch to the right one using:

$ az account set --subscription <subscription name or ID>

Next, you will have to pick the Azure data center location where you’d like to deploy your cluster. You can get a list
of all available locations using:

$ az account list-locations

Next, create an Azure “resource group” to contain all the resources (virtual machines, subnets, etc.) associated with
your soon-to-be-deployed cluster. You can name it whatever you like but avoid fancy characters because they may
confuse some software.

$ az group create --name <resource group name> --location <location name>

Example location names are koreacentral and westeurope.

Finally, you can deploy an ACS using something like:

$ az acs create --name <a made-up cluster name> \
--resource-group <name of resource group created earlier> \
--master-count 3 \
--agent-count 2 \
--admin-username ubuntu \
--agent-vm-size Standard_D2_v2 \
--dns-prefix <make up a name> \
--ssh-key-value ~/.ssh/<name>.pub \
--orchestrator-type kubernetes \
--debug --output json

There are more options. For help understanding all the options, use the built-in help:

$ az acs create --help

It takes a few minutes for all the resources to deploy. You can watch the progress in the Azure Portal: go to Resource
groups (with the blue cube icon) and click on the one you created to see all the resources in it.

Optional: SSH to Your New Kubernetes Cluster Nodes

You can SSH to one of the just-deployed Kubernetes “master” nodes (virtual machines) using:

$ ssh -i ~/.ssh/<name>.pub ubuntu@<master-ip-address-or-hostname>

22 Chapter 5. Production Deployment Template

https://docs.microsoft.com/en-us/cli/azure/install-az-cli2
https://portal.azure.com

BigchainDB Server Documentation, Release 1.0.1

where you can get the IP address or hostname of a master node from the Azure Portal. For example:

$ ssh -i ~/.ssh/mykey123.pub ubuntu@mydnsprefix.westeurope.cloudapp.azure.com

Note: All the master nodes should have the same public IP address and hostname (also called the Master FQDN).

The “agent” nodes shouldn’t get public IP addresses or hostnames, so you can’t SSH to them directly, but you can first
SSH to the master and then SSH to an agent from there. To do that, you could copy your SSH key pair to the master
(a bad idea), or use SSH agent forwarding (better). To do the latter, do the following on the machine you used to SSH
to the master:

$ echo -e "Host <FQDN of the cluster from Azure Portal>\n ForwardAgent yes" >> ~/.
→˓ssh/config

To verify that SSH agent forwarding works properly, SSH to the one of the master nodes and do:

$ echo "$SSH_AUTH_SOCK"

If you get an empty response, then SSH agent forwarding hasn’t been set up correctly. If you get a non-empty
response, then SSH agent forwarding should work fine and you can SSH to one of the agent nodes (from a master)
using something like:

$ ssh ubuntu@k8s-agent-4AC80E97-0

where k8s-agent-4AC80E97-0 is the name of a Kubernetes agent node in your Kubernetes cluster. You will have
to replace it by the name of an agent node in your cluster.

Optional: Delete the Kubernetes Cluster

$ az acs delete \
--name <ACS cluster name> \
--resource-group <name of resource group containing the cluster>

Optional: Delete the Resource Group

CAUTION: You might end up deleting resources other than the ACS cluster.

$ az group delete \
--name <name of resource group containing the cluster>

Next, you can run a BigchainDB node on your new Kubernetes cluster.

Kubernetes Template: Deploy a Single BigchainDB Node

This page describes how to deploy the first BigchainDB node in a BigchainDB cluster, or a stand-alone BigchainDB
node, using Kubernetes. It assumes you already have a running Kubernetes cluster.

If you want to add a new BigchainDB node to an existing BigchainDB cluster, refer to the page about that.

Below, we refer to many files by their directory and filename, such as configuration/config-map.yaml.
Those files are files in the bigchaindb/bigchaindb repository on GitHub in the k8s/ directory. Make sure you’re

5.7. Kubernetes Template: Deploy a Single BigchainDB Node 23

https://kubernetes.io/
https://github.com/bigchaindb/bigchaindb/

BigchainDB Server Documentation, Release 1.0.1

getting those files from the appropriate Git branch on GitHub, i.e. the branch for the version of BigchainDB that your
BigchainDB cluster is using.

Step 1: Install and Configure kubectl

kubectl is the Kubernetes CLI. If you don’t already have it installed, then see the Kubernetes docs to install it.

The default location of the kubectl configuration file is ~/.kube/config. If you don’t have that file, then you need
to get it.

Azure. If you deployed your Kubernetes cluster on Azure using the Azure CLI 2.0 (as per our template), then you can
get the ~/.kube/config file using:

$ az acs kubernetes get-credentials \
--resource-group <name of resource group containing the cluster> \
--name <ACS cluster name>

If it asks for a password (to unlock the SSH key) and you enter the correct password, but you get an error message,
then try adding --ssh-key-file ~/.ssh/<name> to the above command (i.e. the path to the private key).

Note: About kubectl contexts. You might manage several Kubernetes clusters. To make it easy to switch from one
to another, kubectl has a notion of “contexts,” e.g. the context for cluster 1 or the context for cluster 2. To find out the
current context, do:

$ kubectl config view

and then look for the current-context in the output. The output also lists all clusters, contexts and users. (You
might have only one of each.) You can switch to a different context using:

$ kubectl config use-context <new-context-name>

You can also switch to a different context for just one command by inserting --context <context-name> into
any kubectl command. For example:

$ kubectl --context k8s-bdb-test-cluster-0 get pods

will get a list of the pods in the Kubernetes cluster associated with the context named k8s-bdb-test-cluster-0.

Step 2: Connect to Your Cluster’s Web UI (Optional)

You can connect to your cluster’s Kubernetes Dashboard (also called the Web UI) using:

$ kubectl proxy -p 8001

or, if you prefer to be explicit about the context (explained above):

$ kubectl --context k8s-bdb-test-cluster-0 proxy -p 8001

The output should be something like Starting to serve on 127.0.0.1:8001. That means you can visit
the dashboard in your web browser at http://127.0.0.1:8001/ui.

24 Chapter 5. Production Deployment Template

https://kubernetes.io/docs/user-guide/prereqs/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
http://127.0.0.1:8001/ui

BigchainDB Server Documentation, Release 1.0.1

Step 3: Configure Your BigchainDB Node

See the page titled How to Configure a BigchainDB Node.

Step 4: Start the NGINX Service

• This will will give us a public IP for the cluster.

• Once you complete this step, you might need to wait up to 10 mins for the public IP to be assigned.

• You have the option to use vanilla NGINX without HTTPS support or an OpenResty NGINX integrated with
3scale API Gateway.

Step 4.1: Vanilla NGINX

• This configuration is located in the file nginx/nginx-svc.yaml.

• Set the metadata.name and metadata.labels.name to the value set in ngx-instance-name in
the ConfigMap above.

• Set the spec.selector.app to the value set in ngx-instance-name in the ConfigMap followed by
-dep. For example, if the value set in the ngx-instance-name is ngx-instance-0, set the spec.
selector.app to ngx-instance-0-dep.

• Set ngx-public-mdb-port.port to 27017, or the port number on which you want to expose MongoDB
service. Set the ngx-public-mdb-port.targetPort to the port number on which the Kubernetes Mon-
goDB service will be present.

• Set ngx-public-api-port.port to 80, or the port number on which you want to expose BigchainDB
API service. Set the ngx-public-api-port.targetPort to the port number on which the Kubernetes
BigchainDB API service will present.

• Set ngx-public-ws-port.port to 81, or the port number on which you want to expose BigchainDB Web-
socket service. Set the ngx-public-ws-port.targetPort to the port number on which the BigchainDB
Websocket service will be present.

• Start the Kubernetes Service:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f nginx/nginx-svc.yaml

Step 4.2: OpenResty NGINX + 3scale

• You have to enable HTTPS for this one and will need an HTTPS certificate for your domain.

• You should have already created the necessary Kubernetes Secrets in the previous step (e.g. https-certs
and threescale-credentials).

• This configuration is located in the file nginx-3scale/nginx-3scale-svc.yaml.

• Set the metadata.name and metadata.labels.name to the value set in ngx-instance-name in
the ConfigMap above.

• Set the spec.selector.app to the value set in ngx-instance-name in the ConfigMap followed by
-dep. For example, if the value set in the ngx-instance-name is ngx-instance-0, set the spec.
selector.app to ngx-instance-0-dep.

5.7. Kubernetes Template: Deploy a Single BigchainDB Node 25

BigchainDB Server Documentation, Release 1.0.1

• Set ngx-public-mdb-port.port to 27017, or the port number on which you want to expose MongoDB
service. Set the ngx-public-mdb-port.targetPort to the port number on which the Kubernetes Mon-
goDB service will be present.

• Set ngx-public-3scale-port.port to 8080, or the port number on which you want to let 3scale com-
municate with Openresty NGINX for authenctication. Set the ngx-public-3scale-port.targetPort
to the port number on which this Openresty NGINX service will be listening to for communication with 3scale.

• Set ngx-public-bdb-port.port to 443, or the port number on which you want to expose BigchainDB
API service. Set the ngx-public-api-port.targetPort to the port number on which the Kubernetes
BigchainDB API service will present.

• Set ngx-public-bdb-port-http.port to 80, or the port number on which you want to expose
BigchainDB Websocket service. Set the ngx-public-bdb-port-http.targetPort to the port number
on which the BigchainDB Websocket service will be present.

• Start the Kubernetes Service:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f nginx-3scale/nginx-3scale-svc.
→˓yaml

Step 5: Assign DNS Name to the NGINX Public IP

• This step is required only if you are planning to set up multiple BigchainDB nodes or are using HTTPS certifi-
cates tied to a domain.

• The following command can help you find out if the NGINX service started above has been assigned a public
IP or external IP address:

$ kubectl --context k8s-bdb-test-cluster-0 get svc -w

• Once a public IP is assigned, you can map it to a DNS name. We usually assign bdb-test-cluster-0,
bdb-test-cluster-1 and so on in our documentation. Let’s assume that we assign the unique name of
bdb-test-cluster-0 here.

Set up DNS mapping in Azure. Select the current Azure resource group and look for the Public IP resource. You
should see at least 2 entries there - one for the Kubernetes master and the other for the MongoDB instance. You may
have to Refresh the Azure web page listing the resources in a resource group for the latest changes to be reflected.
Select the Public IP resource that is attached to your service (it should have the Azure DNS prefix name along
with a long random string, without the master-ip string), select Configuration, add the DNS assigned above
(for example, bdb-test-cluster-0), click Save, and wait for the changes to be applied.

To verify the DNS setting is operational, you can run nslookup <DNS name added in ConfigMap> from
your local Linux shell.

This will ensure that when you scale the replica set later, other MongoDB members in the replica set can reach this
instance.

Step 6: Start the MongoDB Kubernetes Service

• This configuration is located in the file mongodb/mongo-svc.yaml.

• Set the metadata.name and metadata.labels.name to the value set in mdb-instance-name in
the ConfigMap above.

• Set the spec.selector.app to the value set in mdb-instance-name in the ConfigMap followed by
-ss. For example, if the value set in the mdb-instance-name is mdb-instance-0, set the spec.
selector.app to mdb-instance-0-ss.

26 Chapter 5. Production Deployment Template

https://docs.bigchaindb.com/en/latest/terminology.html

BigchainDB Server Documentation, Release 1.0.1

• Start the Kubernetes Service:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f mongodb/mongo-svc.yaml

Step 7: Start the BigchainDB Kubernetes Service

• This configuration is located in the file bigchaindb/bigchaindb-svc.yaml.

• Set the metadata.name and metadata.labels.name to the value set in bdb-instance-name in
the ConfigMap above.

• Set the spec.selector.app to the value set in bdb-instance-name in the ConfigMap followed by
-dep. For example, if the value set in the bdb-instance-name is bdb-instance-0, set the spec.
selector.app to bdb-instance-0-dep.

• Start the Kubernetes Service:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f bigchaindb/bigchaindb-svc.yaml

Step 8: Start the NGINX Kubernetes Deployment

• NGINX is used as a proxy to both the BigchainDB and MongoDB instances in the node. It proxies HTTP
requests on port 80 to the BigchainDB backend, and TCP connections on port 27017 to the MongoDB backend.

• As in step 4, you have the option to use vanilla NGINX or an OpenResty NGINX integrated with 3scale API
Gateway.

Step 8.1: Vanilla NGINX

• This configuration is located in the file nginx/nginx-dep.yaml.

• Set the metadata.name and spec.template.metadata.labels.app to the value set in
ngx-instance-name in the ConfigMap followed by a -dep. For example, if the value set in the
ngx-instance-name is ngx-instance-0, set the fields to ngx-instance-0-dep.

• Set MONGODB_BACKEND_HOST env var to the value set in mdb-instance-name in the ConfigMap, fol-
lowed by .default.svc.cluster.local. For example, if the value set in the mdb-instance-name
is mdb-instance-0, set the MONGODB_BACKEND_HOST env var to mdb-instance-0.default.
svc.cluster.local.

• Set BIGCHAINDB_BACKEND_HOST env var to the value set in bdb-instance-name in the Con-
figMap, followed by .default.svc.cluster.local. For example, if the value set in the
bdb-instance-name is bdb-instance-0, set the BIGCHAINDB_BACKEND_HOST env var to
bdb-instance-0.default.svc.cluster.local.

• Start the Kubernetes Deployment:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f nginx/nginx-dep.yaml

Step 8.2: OpenResty NGINX + 3scale

• This configuration is located in the file nginx-3scale/nginx-3scale-dep.yaml.

5.7. Kubernetes Template: Deploy a Single BigchainDB Node 27

BigchainDB Server Documentation, Release 1.0.1

• Set the metadata.name and spec.template.metadata.labels.app to the value set in
ngx-instance-name in the ConfigMap followed by a -dep. For example, if the value set in the
ngx-instance-name is ngx-instance-0, set the fields to ngx-instance-0-dep.

• Set MONGODB_BACKEND_HOST env var to the value set in mdb-instance-name in the ConfigMap, fol-
lowed by .default.svc.cluster.local. For example, if the value set in the mdb-instance-name
is mdb-instance-0, set the MONGODB_BACKEND_HOST env var to mdb-instance-0.default.
svc.cluster.local.

• Set BIGCHAINDB_BACKEND_HOST env var to the value set in bdb-instance-name in the Con-
figMap, followed by .default.svc.cluster.local. For example, if the value set in the
bdb-instance-name is bdb-instance-0, set the BIGCHAINDB_BACKEND_HOST env var to
bdb-instance-0.default.svc.cluster.local.

• Start the Kubernetes Deployment:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f nginx-3scale/nginx-3scale-dep.
→˓yaml

Step 9: Create Kubernetes Storage Classes for MongoDB

MongoDB needs somewhere to store its data persistently, outside the container where MongoDB is running. Our
MongoDB Docker container (based on the official MongoDB Docker container) exports two volume mounts with
correct permissions from inside the container:

• The directory where the mongod instance stores its data: /data/db. There’s more explanation in the Mon-
goDB docs about storage.dbpath.

• The directory where the mongodb instance stores the metadata for a sharded cluster: /data/configdb/.
There’s more explanation in the MongoDB docs about sharding.configDB.

Explaining how Kubernetes handles persistent volumes, and the associated terminology, is beyond the scope of this
documentation; see the Kubernetes docs about persistent volumes.

The first thing to do is create the Kubernetes storage classes.

Set up Storage Classes in Azure. First, you need an Azure storage account. If you deployed your Kubernetes cluster
on Azure using the Azure CLI 2.0 (as per our template), then the az acs create command already created two storage
accounts in the same location and resource group as your Kubernetes cluster. Both should have the same “storage
account SKU”: Standard_LRS. Standard storage is lower-cost and lower-performance. It uses hard disk drives
(HDD). LRS means locally-redundant storage: three replicas in the same data center. Premium storage is higher-cost
and higher-performance. It uses solid state drives (SSD). At the time of writing, when we created a storage account
with SKU Premium_LRS and tried to use that, the PersistentVolumeClaim would get stuck in a “Pending” state. For
future reference, the command to create a storage account is az storage account create.

The Kubernetes template for configuration of Storage Class is located in the file mongodb/mongo-sc.yaml.

You may have to update the parameters.location field in the file to specify the location you are using in Azure.

Create the required storage classes using:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f mongodb/mongo-sc.yaml

You can check if it worked using kubectl get storageclasses.

Azure. Note that there is no line of the form storageAccount: <azure storage account name> under
parameters:. When we included one and then created a PersistentVolumeClaim based on it, the PersistentVolume-
Claim would get stuck in a “Pending” state. Kubernetes just looks for a storageAccount with the specified skuName
and location.

28 Chapter 5. Production Deployment Template

https://docs.mongodb.com/manual/reference/configuration-options/#storage.dbPath
https://docs.mongodb.com/manual/reference/configuration-options/#sharding.configDB
https://kubernetes.io/docs/user-guide/persistent-volumes
https://docs.microsoft.com/en-us/cli/azure/storage/account#create

BigchainDB Server Documentation, Release 1.0.1

Step 10: Create Kubernetes Persistent Volume Claims

Next, you will create two PersistentVolumeClaim objects mongo-db-claim and mongo-configdb-claim.

This configuration is located in the file mongodb/mongo-pvc.yaml.

Note how there’s no explicit mention of Azure, AWS or whatever. ReadWriteOnce (RWO) means the volume can
be mounted as read-write by a single Kubernetes node. (ReadWriteOnce is the only access mode supported by
AzureDisk.) storage: 20Gi means the volume has a size of 20 gibibytes.

You may want to update the spec.resources.requests.storage field in both the files to specify a different
disk size.

Create the required Persistent Volume Claims using:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f mongodb/mongo-pvc.yaml

You can check its status using: kubectl get pvc -w

Initially, the status of persistent volume claims might be “Pending” but it should become “Bound” fairly quickly.

Step 11: Start a Kubernetes StatefulSet for MongoDB

• This configuration is located in the file mongodb/mongo-ss.yaml.

• Set the spec.serviceName to the value set in mdb-instance-name in the ConfigMap. For example, if
the value set in the mdb-instance-name is mdb-instance-0, set the field to mdb-instance-0.

• Set metadata.name, spec.template.metadata.name and spec.template.metadata.
labels.app to the value set in mdb-instance-name in the ConfigMap, followed by -ss. For ex-
ample, if the value set in the mdb-instance-name is mdb-instance-0, set the fields to the value
mdb-insance-0-ss.

• Note how the MongoDB container uses the mongo-db-claim and the mongo-configdb-claim Persis-
tentVolumeClaims for its /data/db and /data/configdb directories (mount paths).

• Note also that we use the pod’s securityContext.capabilities.add specification to add the
FOWNER capability to the container. That is because the MongoDB container has the user mongodb, with uid
999 and group mongodb, with gid 999. When this container runs on a host with a mounted disk, the writes
fail when there is no user with uid 999. To avoid this, we use the Docker feature of --cap-add=FOWNER.
This bypasses the uid and gid permission checks during writes and allows data to be persisted to disk. Refer to
the Docker docs for details.

• As we gain more experience running MongoDB in testing and production, we will tweak the resources.
limits.cpu and resources.limits.memory.

• Create the MongoDB StatefulSet using:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f mongodb/mongo-ss.yaml

• It might take up to 10 minutes for the disks, specified in the Persistent Volume Claims above, to be created and
attached to the pod. The UI might show that the pod has errored with the message “timeout expired waiting for
volumes to attach/mount”. Use the CLI below to check the status of the pod in this case, instead of the UI. This
happens due to a bug in Azure ACS.

$ kubectl --context k8s-bdb-test-cluster-0 get pods -w

5.7. Kubernetes Template: Deploy a Single BigchainDB Node 29

https://en.wikipedia.org/wiki/Gibibyte
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

BigchainDB Server Documentation, Release 1.0.1

Step 12: Configure Users and Access Control for MongoDB

• In this step, you will create a user on MongoDB with authorization to create more users and assign roles to
them. Note: You need to do this only when setting up the first MongoDB node of the cluster.

• Find out the name of your MongoDB pod by reading the output of the kubectl ... get pods command
at the end of the last step. It should be something like mdb-instance-0-ss-0.

• Log in to the MongoDB pod using:

$ kubectl --context k8s-bdb-test-cluster-0 exec -it <name of your MongoDB pod>
→˓bash

• Open a mongo shell using the certificates already present at /etc/mongod/ssl/

$ mongo --host localhost --port 27017 --verbose --ssl \
--sslCAFile /etc/mongod/ssl/ca.pem \
--sslPEMKeyFile /etc/mongod/ssl/mdb-instance.pem

• Initialize the replica set using:

> rs.initiate({
_id : "bigchain-rs",
members: [{
_id : 0,
host :"<hostname>:27017"

}]
})

The hostname in this case will be the value set in mdb-instance-name in the ConfigMap. For example,
if the value set in the mdb-instance-name is mdb-instance-0, set the hostname above to the value
mdb-instance-0.

• The instance should be voted as the PRIMARY in the replica set (since this is the only instance in the replica set
till now). This can be observed from the mongo shell prompt, which will read PRIMARY>.

• Create a user adminUser on the admin database with the authorization to create other users. This will only
work the first time you log in to the mongo shell. For further details, see localhost exception in MongoDB.

PRIMARY> use admin
PRIMARY> db.createUser({

user: "adminUser",
pwd: "superstrongpassword",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

})

• Exit and restart the mongo shell using the above command. Authenticate as the adminUser we created earlier:

PRIMARY> use admin
PRIMARY> db.auth("adminUser", "superstrongpassword")

db.auth() returns 0 when authentication is not successful, and 1 when successful.

• We need to specify the user name as seen in the certificate issued to the BigchainDB instance in order to
authenticate correctly. Use the following openssl command to extract the user name from the certificate:

$ openssl x509 -in <path to the bigchaindb certificate> \
-inform PEM -subject -nameopt RFC2253

30 Chapter 5. Production Deployment Template

https://docs.mongodb.com/manual/core/security-users/#localhost-exception

BigchainDB Server Documentation, Release 1.0.1

You should see an output line that resembles:

subject= emailAddress=dev@bigchaindb.com,CN=test-bdb-ssl,OU=BigchainDB-Instance,
→˓O=BigchainDB GmbH,L=Berlin,ST=Berlin,C=DE

The subject line states the complete user name we need to use for creating the user on the mongo shell as
follows:

PRIMARY> db.getSiblingDB("$external").runCommand({
createUser: 'emailAddress=dev@bigchaindb.com,CN=test-bdb-ssl,

→˓OU=BigchainDB-Instance,O=BigchainDB GmbH,L=Berlin,ST=Berlin,C=DE',
writeConcern: { w: 'majority' , wtimeout: 5000 },
roles: [
{ role: 'clusterAdmin', db: 'admin' },
{ role: 'readWriteAnyDatabase', db: 'admin' }

]
})

• You can similarly create users for MongoDB Monitoring Agent and MongoDB Backup Agent. For example:

PRIMARY> db.getSiblingDB("$external").runCommand({
createUser: 'emailAddress=dev@bigchaindb.com,CN=test-mdb-mon-ssl,

→˓OU=MongoDB-Mon-Instance,O=BigchainDB GmbH,L=Berlin,ST=Berlin,C=DE',
writeConcern: { w: 'majority' , wtimeout: 5000 },
roles: [
{ role: 'clusterMonitor', db: 'admin' }

]
})

PRIMARY> db.getSiblingDB("$external").runCommand({
createUser: 'emailAddress=dev@bigchaindb.com,CN=test-mdb-bak-ssl,

→˓OU=MongoDB-Bak-Instance,O=BigchainDB GmbH,L=Berlin,ST=Berlin,C=DE',
writeConcern: { w: 'majority' , wtimeout: 5000 },
roles: [
{ role: 'backup', db: 'admin' }

]
})

Step 13: Start a Kubernetes Deployment for MongoDB Monitoring Agent

• This configuration is located in the file mongodb-monitoring-agent/mongo-mon-dep.yaml.

• Set metadata.name, spec.template.metadata.name and spec.template.metadata.
labels.app to the value set in mdb-mon-instance-name in the ConfigMap, followed by -dep. For
example, if the value set in the mdb-mon-instance-name is mdb-mon-instance-0, set the fields to
the value mdb-mon-instance-0-dep.

• Start the Kubernetes Deployment using:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f mongodb-monitoring-agent/
→˓mongo-mon-dep.yaml

Step 14: Start a Kubernetes Deployment for MongoDB Backup Agent

• This configuration is located in the file mongodb-backup-agent/mongo-backup-dep.yaml.

5.7. Kubernetes Template: Deploy a Single BigchainDB Node 31

BigchainDB Server Documentation, Release 1.0.1

• Set metadata.name, spec.template.metadata.name and spec.template.metadata.
labels.app to the value set in mdb-bak-instance-name in the ConfigMap, followed by -dep. For
example, if the value set in the mdb-bak-instance-name is mdb-bak-instance-0, set the fields to
the value mdb-bak-instance-0-dep.

• Start the Kubernetes Deployment using:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f mongodb-backup-agent/mongo-
→˓backup-dep.yaml

Step 15: Start a Kubernetes Deployment for BigchainDB

• This configuration is located in the file bigchaindb/bigchaindb-dep.yaml.

• Set metadata.name and spec.template.metadata.labels.app to the value set in
bdb-instance-name in the ConfigMap, followed by -dep. For example, if the value set in the
bdb-instance-name is bdb-instance-0, set the fields to the value bdb-insance-0-dep.

• Set the value of BIGCHAINDB_KEYPAIR_PRIVATE (not base64-encoded). (In the future, we’d like to pull
the BigchainDB private key from the Secret named bdb-private-key, but a Secret can only be mounted as
a file, so BigchainDB Server would have to be modified to look for it in a file.)

• As we gain more experience running BigchainDB in testing and production, we will tweak the resources.
limits values for CPU and memory, and as richer monitoring and probing becomes available in BigchainDB,
we will tweak the livenessProbe and readinessProbe parameters.

• Create the BigchainDB Deployment using:

$ kubectl --context k8s-bdb-test-cluster-0 apply -f bigchaindb/bigchaindb-dep.yaml

• You can check its status using the command kubectl get deployments -w

Step 16: Configure the MongoDB Cloud Manager

Refer to the documentation for details on how to configure the MongoDB Cloud Manager to enable monitoring and
backup.

Step 17: Verify the BigchainDB Node Setup

Step 17.1: Testing Internally

To test the setup of your BigchainDB node, you could use a Docker container that provides utilities like nslookup,
curl and dig. For example, you could use a container based on our bigchaindb/toolbox image. (The corresponding
Dockerfile is in the bigchaindb/bigchaindb repository on GitHub.) You can use it as below to get started
immediately:

$ kubectl --context k8s-bdb-test-cluster-0 \
run -it toolbox \
--image bigchaindb/toolbox \
--image-pull-policy=Always \
--restart=Never --rm

It will drop you to the shell prompt.

To test the MongoDB instance:

32 Chapter 5. Production Deployment Template

https://hub.docker.com/r/bigchaindb/toolbox/
https://github.com/bigchaindb/bigchaindb/blob/master/k8s/toolbox/Dockerfile

BigchainDB Server Documentation, Release 1.0.1

$ nslookup mdb-instance-0

$ dig +noall +answer _mdb-port._tcp.mdb-instance-0.default.svc.cluster.local SRV

$ curl -X GET http://mdb-instance-0:27017

The nslookup command should output the configured IP address of the service (in the cluster). The dig command
should return the configured port numbers. The curl command tests the availability of the service.

To test the BigchainDB instance:

$ nslookup bdb-instance-0

$ dig +noall +answer _bdb-port._tcp.bdb-instance-0.default.svc.cluster.local SRV

$ curl -X GET http://bdb-instance-0:9984

To test the NGINX instance:

$ nslookup ngx-instance-0

$ dig +noall +answer _ngx-public-mdb-port._tcp.ngx-instance-0.default.svc.cluster.
→˓local SRV

$ dig +noall +answer _ngx-public-bdb-port._tcp.ngx-instance-0.default.svc.cluster.
→˓local SRV

$ curl -X GET http://ngx-instance-0:27017

The curl command should result get the response curl: (7) Failed to connect to
ngx-instance-0 port 27017: Connection refused.

If you ran the vanilla NGINX instance, run:

$ curl -X GET http://ngx-instance-0:80

If you ran the OpenResty NGINX + 3scale instance, run:

$ curl -X GET https://ngx-instance-0

Step 17.2: Testing Externally

Check the MongoDB monitoring and backup agent on the MongoDB Cloud Manager portal to verify they are working
fine.

Try to access the <DNS/IP of your exposed BigchainDB service endpoint>:80 on your browser.
You should receive a JSON response that shows the BigchainDB server version, among other things.

Use the Python Driver to send some transactions to the BigchainDB node and verify that your node or cluster works
as expected.

5.7. Kubernetes Template: Deploy a Single BigchainDB Node 33

BigchainDB Server Documentation, Release 1.0.1

Kubernetes Template: Add a BigchainDB Node to an Existing
BigchainDB Cluster

This page describes how to deploy a BigchainDB node using Kubernetes, and how to add that node to an exist-
ing BigchainDB cluster. It assumes you already have a running Kubernetes cluster where you can deploy the new
BigchainDB node.

If you want to deploy the first BigchainDB node in a BigchainDB cluster, or a stand-alone BigchainDB node, then see
the page about that.

Terminology Used

existing cluster will refer to one of the existing Kubernetes clusters hosting one of the existing BigchainDB
nodes.

ctx-1 will refer to the kubectl context of the existing cluster.

new cluster will refer to the new Kubernetes cluster that will run a new BigchainDB node (including a
BigchainDB instance and a MongoDB instance).

ctx-2 will refer to the kubectl context of the new cluster.

new MongoDB instance will refer to the MongoDB instance in the new cluster.

existing MongoDB instance will refer to the MongoDB instance in the existing cluster.

new BigchainDB instance will refer to the BigchainDB instance in the new cluster.

existing BigchainDB instance will refer to the BigchainDB instance in the existing cluster.

Step 1: Prerequisites

• A public/private key pair for the new BigchainDB instance.

• The public key should be shared offline with the other existing BigchainDB nodes in the existing BigchainDB
cluster.

• You will need the public keys of all the existing BigchainDB nodes.

• A new Kubernetes cluster setup with kubectl configured to access it.

• Some familiarity with deploying a BigchainDB node on Kubernetes. See our other docs about that.

Note: If you are managing multiple Kubernetes clusters, from your local system, you can run kubectl config
view to list all the contexts that are available for the local kubectl. To target a specific cluster, add a --context
flag to the kubectl CLI. For example:

$ kubectl --context ctx-1 apply -f example.yaml
$ kubectl --context ctx-2 apply -f example.yaml
$ kubectl --context ctx-1 proxy --port 8001
$ kubectl --context ctx-2 proxy --port 8002

Step 2: Prepare the New Kubernetes Cluster

Follow the steps in the sections to set up Storage Classes and Persistent Volume Claims, and to run MongoDB in the
new cluster:

34 Chapter 5. Production Deployment Template

BigchainDB Server Documentation, Release 1.0.1

1. Add Storage Classes.

2. Add Persistent Volume Claims.

3. Create the Config Map.

4. Run MongoDB instance.

Step 3: Add the New MongoDB Instance to the Existing Replica Set

Note that by replica set, we are referring to the MongoDB replica set, not a Kubernetes’ ReplicaSet.

If you are not the administrator of an existing BigchainDB node, you will have to coordinate offline with an existing
administrator so that they can add the new MongoDB instance to the replica set.

Add the new instance of MongoDB from an existing instance by accessing the mongo shell.

$ kubectl --context ctx-1 exec -it mdb-0 -c mongodb -- /bin/bash
root@mdb-0# mongo --port 27017

One can only add members to a replica set from the PRIMARY instance. The mongo shell prompt should state that
this is the primary member in the replica set. If not, then you can use the rs.status() command to find out who
the primary is and login to the mongo shell in the primary.

Run the rs.add() command with the FQDN and port number of the other instances:

PRIMARY> rs.add("<fqdn>:<port>")

Step 4: Verify the Replica Set Membership

You can use the rs.conf() and the rs.status() commands available in the mongo shell to verify the replica
set membership.

The new MongoDB instance should be listed in the membership information displayed.

Step 5: Start the New BigchainDB Instance

Get the file bigchaindb-dep.yaml from GitHub using:

$ wget https://raw.githubusercontent.com/bigchaindb/bigchaindb/master/k8s/bigchaindb/
→˓bigchaindb-dep.yaml

Note that we set the BIGCHAINDB_DATABASE_HOST to mdb which is the name of the MongoDB service defined
earlier.

Edit the BIGCHAINDB_KEYPAIR_PUBLIC with the public key of this instance, the
BIGCHAINDB_KEYPAIR_PRIVATE with the private key of this instance and the BIGCHAINDB_KEYRING
with a : delimited list of all the public keys in the BigchainDB cluster.

Create the required Deployment using:

$ kubectl --context ctx-2 apply -f bigchaindb-dep.yaml

You can check its status using the command kubectl get deploy -w

5.8. Kubernetes Template: Add a BigchainDB Node to an Existing BigchainDB Cluster 35

BigchainDB Server Documentation, Release 1.0.1

Step 6: Restart the Existing BigchainDB Instance(s)

Add the public key of the new BigchainDB instance to the keyring of all the existing BigchainDB instances and update
the BigchainDB instances using:

$ kubectl --context ctx-1 replace -f bigchaindb-dep.yaml

This will create a “rolling deployment” in Kubernetes where a new instance of BigchainDB will be created, and if
the health check on the new instance is successful, the earlier one will be terminated. This ensures that there is zero
downtime during updates.

You can SSH to an existing BigchainDB instance and run the bigchaindb show-config command to check that
the keyring is updated.

Step 7: Run NGINX as a Deployment

Please see this page to set up NGINX in your new node.

Step 8: Test Your New BigchainDB Node

Please refer to the testing steps here to verify that your new BigchainDB node is working as expected.

Kubernetes Template: Upgrade all Software in a BigchainDB Node

This page outlines how to upgrade all the software associated with a BigchainDB node running on Kubernetes, includ-
ing host operating systems, Docker, Kubernetes, and BigchainDB-related software.

Upgrade Host OS, Docker and Kubernetes

Some Kubernetes installation & management systems can do full or partial upgrades of host OSes, Docker, or Kuber-
netes, e.g. Tectonic, Rancher, and Kubo. Consult the documentation for your system.

Azure Container Service (ACS). On Dec. 15, 2016, a Microsoft employee wrote: “In the coming months we [the
Azure Kubernetes team] will be building managed updates in the ACS service.” At the time of writing, managed
updates were not yet available, but you should check the latest ACS documentation to see what’s available now. Also
at the time of writing, ACS only supported Ubuntu as the host (master and agent) operating system. You can upgrade
Ubuntu and Docker on Azure by SSHing into each of the hosts, as documented on another page.

In general, you can SSH to each host in your Kubernetes Cluster to update the OS and Docker.

Note: Once you are in an SSH session with a host, the docker info command is a handy way to detemine the
host OS (including version) and the Docker version.

When you want to upgrade the software on a Kubernetes node, you should “drain” the node first, i.e. tell Kubernetes
to gracefully terminate all pods on the node and mark it as unscheduleable (so no new pods get put on the node during
its downtime).

kubectl drain $NODENAME

36 Chapter 5. Production Deployment Template

https://coreos.com/tectonic/
https://docs.rancher.com/rancher/v1.5/en/
https://pivotal.io/kubo
https://github.com/colemickens/azure-kubernetes-status/issues/15#issuecomment-267453251
https://docs.microsoft.com/en-us/azure/container-service/

BigchainDB Server Documentation, Release 1.0.1

There are more details in the Kubernetes docs, including instructions to make the node scheduleable again.

To manually upgrade the host OS, see the docs for that OS.

To manually upgrade Docker, see the Docker docs.

To manually upgrade all Kubernetes software in your Kubernetes cluster, see the Kubernetes docs.

Upgrade BigchainDB-Related Software

We use Kubernetes “Deployments” for NGINX, BigchainDB, and most other BigchainDB-related software. The only
exception is MongoDB; we use a Kubernetes StatefulSet for that.

The nice thing about Kubernetes Deployments is that Kubernetes can manage most of the upgrade process. A typical
upgrade workflow for a single Deployment would be:

$ KUBE_EDITOR=nano kubectl edit deployment/<name of Deployment>

The kubectl edit command opens the specified editor (nano in the above example), allowing you to edit the spec-
ified Deployment in the Kubernetes cluster. You can change the version tag on the Docker image, for example. Don’t
forget to save your edits before exiting the editor. The Kubernetes docs have more information about Deployments
(including updating them).

The upgrade story for the MongoDB StatefulSet is different. (This is because MongoDB has persistent state, which is
stored in some storage associated with a PersistentVolumeClaim.) At the time of writing, StatefulSets were still in beta,
and they did not support automated image upgrade (Docker image tag upgrade). We expect that to change. Rather
than trying to keep these docs up-to-date, we advise you to check out the current Kubernetes docs about updating
containers in StatefulSets.

Log Analytics on Azure

This section documents how to create and configure a Log Analytics workspace on Azure, for a Kubernetes-based de-
ployment. The documented approach is based on an integration of Microsoft’s Operations Management Suite (OMS)
with a Kubernetes-based Azure Container Service cluster.

The References section (below) contains links to more detailed documentation on Azure, and Kubernetes.

There are three main steps involved:

1. Create a workspace (LogAnalyticsOMS).

2. Create a ContainersOMS solution under the workspace.

3. Deploy the OMS agent(s).

Steps 1 and 2 rely on Azure Resource Manager templates and can be done with one template so we’ll cover them
together. Step 3 relies on a Kubernetes DaemonSet and will be covered separately.

Minimum Requirements

This document assumes that you have already deployed a Kubernetes cluster, and that you have the Kubernetes com-
mand line interface kubectl installed.

5.10. Log Analytics on Azure 37

https://kubernetes.io/docs/concepts/cluster-administration/cluster-management/#maintenance-on-a-node
https://docs.docker.com/
https://kubernetes.io/docs/admin/cluster-management/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/#updating-containers
https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/#updating-containers
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

BigchainDB Server Documentation, Release 1.0.1

Creating a Workspace and Adding a Containers Solution

For the sake of this document and example, we’ll assume an existing resource group named:

• resource_group

and the workspace we’ll create will be named:

• work_space

If you feel creative you may replace these names by more interesting ones.

$ az group deployment create --debug \
--resource-group resource_group \
--name "Microsoft.LogAnalyticsOMS" \
--template-file log_analytics_oms.json \
--parameters @log_analytics_oms.parameters.json

An example of a simple template file (--template-file):

{
"$schema": "http://schema.management.azure.com/schemas/2014-04-01-preview/

→˓deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"sku": {

"type": "String"
},
"workspaceName": {

"type": "String"
},
"solutionType": {

"type": "String"
},
},
"resources": [
{

"apiVersion": "2015-03-20",
"type": "Microsoft.OperationalInsights/workspaces",
"name": "[parameters('workspaceName')]",
"location": "[resourceGroup().location]",
"properties": {

"sku": {
"name": "[parameters('sku')]"

}
},
"resources": [

{
"apiVersion": "2015-11-01-preview",
"location": "[resourceGroup().location]",
"name": "[Concat(parameters('solutionType'), '(', parameters(

→˓'workspaceName'), ')')]",
"type": "Microsoft.OperationsManagement/solutions",
"id": "[Concat(resourceGroup().id, '/providers/Microsoft.

→˓OperationsManagement/solutions/', parameters('solutionType'), '(', parameters(
→˓'workspaceName'), ')')]",

"dependsOn": [
"[concat('Microsoft.OperationalInsights/workspaces/', parameters(

→˓'workspaceName'))]"
],

38 Chapter 5. Production Deployment Template

BigchainDB Server Documentation, Release 1.0.1

"properties": {
"workspaceResourceId": "[resourceId('Microsoft.

→˓OperationalInsights/workspaces/', parameters('workspaceName'))]"
},
"plan": {

"publisher": "Microsoft",
"product": "[Concat('OMSGallery/', parameters('solutionType'))]",
"name": "[Concat(parameters('solutionType'), '(', parameters(

→˓'workspaceName'), ')')]",
"promotionCode": ""

}
}

]
}
]

}

An example of the associated parameter file (--parameters):

{
"$schema": "https://schema.management.azure.com/schemas/2015-01-01/

→˓deploymentParameters.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"sku": {

"value": "Free"
},
"workspaceName": {

"value": "work_space"
},
"solutionType": {

"value": "Containers"
},
}

}

Deploy the OMS Agents

To deploy an OMS agent, two important pieces of information are needed:

• workspace id

• workspace key

You can obtain the workspace id using:

$ az resource show \
--resource-group resource_group
--resource-type Microsoft.OperationalInsights/workspaces
--name work_space \
| grep customerId

"customerId": "12345678-1234-1234-1234-123456789012",

Until we figure out a way to obtain the workspace key via the command line, you can get it via the OMS Portal. To get
to the OMS Portal, go to the Azure Portal and click on:

Resource Groups > (Your k8s cluster’s resource group) > Log analytics (OMS) > (Name of the only item listed) >
OMS Workspace > OMS Portal

5.10. Log Analytics on Azure 39

BigchainDB Server Documentation, Release 1.0.1

(Let us know if you find a faster way.) Then see Microsoft’s instructions to obtain your workspace ID and key (via the
OMS Portal).

Once you have the workspace id and key, you can include them in the following YAML file (oms-daemonset.
yaml):

oms-daemonset.yaml
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:

name: omsagent
spec:

template:
metadata:

labels:
app: omsagent

spec:
containers:
- env:

- name: WSID
value: <workspace_id>

- name: KEY
value: <workspace_key>

image: microsoft/oms
name: omsagent
ports:
- containerPort: 25225
protocol: TCP

securityContext:
privileged: true

volumeMounts:
- mountPath: /var/run/docker.sock
name: docker-sock

volumes:
- name: docker-sock

hostPath:
path: /var/run/docker.sock

To deploy the OMS agents (one per Kubernetes node, i.e. one per computer), simply run the following command:

$ kubectl create -f oms-daemonset.yaml

Search the OMS Logs

OMS should now be getting, storing and indexing all the logs from all the containers in your Kubernetes cluster.
You can search the OMS logs from the Azure Portal or the OMS Portal, but at the time of writing, there was more
functionality in the OMS Portal (e.g. the ability to create an Alert based on a search).

There are instructions to get to the OMS Portal in the section titled Deploy the OMS Agents above. Once you’re in the
OMS Portal, click on Log Search and enter a query. Here are some example queries:

All logging messages containing the strings “critical” or “error” (not case-sensitive):

Type=ContainerLog (critical OR error)

Note: You can filter the results even more by clicking on things in the left sidebar. For OMS Log Search syntax help,

40 Chapter 5. Production Deployment Template

https://docs.microsoft.com/en-us/azure/container-service/container-service-kubernetes-oms#obtain-your-workspace-id-and-key

BigchainDB Server Documentation, Release 1.0.1

see the Log Analytics search reference.

All logging messages containing the string “error” but not “404”:

Type=ContainerLog error NOT(404)

All logging messages containing the string “critical” but not “CriticalAddonsOnly”:

Type=ContainerLog critical NOT(CriticalAddonsOnly)

All logging messages from containers running the Docker image bigchaindb/nginx_3scale:1.3, containing the string
“GET” but not the strings “Go-http-client” or “runscope” (where those exclusions filter out tests by Kubernetes and
Runscope):

Type=ContainerLog Image="bigchaindb/nginx_3scale:1.3" GET
NOT("Go-http-client") NOT(runscope)

Note: We wrote a small Python 3 script to analyze the logs found by the above NGINX search. It’s in k8s/
logging-and-monitoring/analyze.py. The docsting at the top of the script explains how to use it.

Create an Email Alert

Once you’re satisfied with an OMS Log Search query string, click the Alert icon in the top menu, fill in the form, and
click Save when you’re done.

Some Useful Management Tasks

List workspaces:

$ az resource list \
--resource-group resource_group \
--resource-type Microsoft.OperationalInsights/workspaces

List solutions:

$ az resource list \
--resource-group resource_group \
--resource-type Microsoft.OperationsManagement/solutions

Delete the containers solution:

$ az group deployment delete --debug \
--resource-group resource_group \
--name Microsoft.ContainersOMS

$ az resource delete \
--resource-group resource_group \
--resource-type Microsoft.OperationsManagement/solutions \
--name "Containers(work_space)"

Delete the workspace:

5.10. Log Analytics on Azure 41

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-search-reference

BigchainDB Server Documentation, Release 1.0.1

$ az group deployment delete --debug \
--resource-group resource_group \
--name Microsoft.LogAnalyticsOMS

$ az resource delete \
--resource-group resource_group \
--resource-type Microsoft.OperationalInsights/workspaces \
--name work_space

References

• Monitor an Azure Container Service cluster with Microsoft Operations Management Suite (OMS)

• Manage Log Analytics using Azure Resource Manager templates

• azure commands for deployments (az group deployment)

• Understand the structure and syntax of Azure Resource Manager templates

• Kubernetes DaemonSet

How to Install & Configure Easy-RSA

We use Easy-RSA version 3, a wrapper over complex openssl commands. Easy-RSA is available on GitHub and
licensed under GPLv2.

Step 1: Install Easy-RSA Dependencies

The only dependency for Easy-RSA v3 is openssl, which is available from the openssl package on Ubuntu and
other Debian-based operating systems, i.e. you can install it using:

sudo apt-get update

sudo apt-get install openssl

Step 2: Install Easy-RSA

Make sure you’re in the directory where you want Easy-RSA to live, then download it and extract it within that
directory:

wget https://github.com/OpenVPN/easy-rsa/archive/3.0.1.tar.gz

tar xzvf 3.0.1.tar.gz

rm 3.0.1.tar.gz

There should now be a directory named easy-rsa-3.0.1 in your current directory.

42 Chapter 5. Production Deployment Template

https://docs.microsoft.com/en-us/azure/container-service/container-service-kubernetes-oms
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-template-workspace-configuration
https://docs.microsoft.com/en-us/cli/azure/group/deployment
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://community.openvpn.net/openvpn/wiki/EasyRSA3-OpenVPN-Howto
https://github.com/OpenVPN/easy-rsa/releases

BigchainDB Server Documentation, Release 1.0.1

Step 3: Customize the Easy-RSA Configuration

We now create a config file named vars by copying the existing vars.example file and then editing it. You
should change the country, province, city, org and email to the correct values for your organisation. (Note: The
country, province, city, org and email are part of the Distinguished Name (DN).) The comments in the file explain
what each of the variables mean.

cd easy-rsa-3.0.1/easyrsa3

cp vars.example vars

echo 'set_var EASYRSA_DN "org"' >> vars
echo 'set_var EASYRSA_KEY_SIZE 4096' >> vars

echo 'set_var EASYRSA_REQ_COUNTRY "DE"' >> vars
echo 'set_var EASYRSA_REQ_PROVINCE "Berlin"' >> vars
echo 'set_var EASYRSA_REQ_CITY "Berlin"' >> vars
echo 'set_var EASYRSA_REQ_ORG "BigchainDB GmbH"' >> vars
echo 'set_var EASYRSA_REQ_OU "IT"' >> vars
echo 'set_var EASYRSA_REQ_EMAIL "dev@bigchaindb.com"' >> vars

Note: Later, when building a CA or generating a certificate signing request, you will be prompted to enter a
value for the OU (or to accept the default). You should change the default OU from IT to one of the following,
as appropriate: ROOT-CA, MongoDB-Instance, BigchainDB-Instance, MongoDB-Mon-Instance or
MongoDB-Backup-Instance. To understand why, see the MongoDB Manual. There are reminders to do this in
the relevant docs.

Step 4: Maybe Edit x509-types/server

Warning: Only do this step if you are setting up a self-signed CA.

Edit the file x509-types/server and change extendedKeyUsage = serverAuth to
extendedKeyUsage = serverAuth,clientAuth. See the MongoDB documentation about x.509
authentication to understand why.

Configure MongoDB Cloud Manager for Monitoring and Backup

This document details the steps required to configure MongoDB Cloud Manager to enable monitoring and backup of
data in a MongoDB Replica Set.

Configure MongoDB Cloud Manager for Monitoring

• Once the Monitoring Agent is up and running, open MongoDB Cloud Manager.

• Click Login under MongoDB Cloud Manager and log in to the Cloud Manager.

• Select the group from the dropdown box on the page.

• Go to Settings, Group Settings and add a Preferred Hostnames entry as a regexp based on the
mdb-instance-name of the nodes in your cluster. It may take up to 5 mins till this setting takes effect.
You may refresh the browser window and verify whether the changes have been saved or not.

5.12. Configure MongoDB Cloud Manager for Monitoring and Backup 43

https://en.wikipedia.org/wiki/X.509#Certificates
https://docs.mongodb.com/manual/tutorial/configure-x509-client-authentication/
https://docs.mongodb.com/manual/core/security-x.509/
https://docs.mongodb.com/manual/core/security-x.509/
https://cloud.mongodb.com

BigchainDB Server Documentation, Release 1.0.1

For example, for the nodes in a cluster that are named mdb-instance-0, mdb-instance-1 and so on, a
regex like ^mdb-instance-[0-9]{1,2}$ is recommended.

• Next, click the Deployment tab, and then the Manage Existing button.

• On the Import your deployment for monitoring page, enter the hostname to be the same
as the one set for mdb-instance-name in the global ConfigMap for a node. For example, if the
mdb-instance-name is set to mdb-instance-0, enter mdb-instance-0 as the value in this field.

• Enter the port number as 27017, with no authentication.

• If you have authentication enabled, select the option to enable authentication and specify the authentication
mechanism as per your deployment. The default BigchainDB production deployment currently supports X.
509 Client Certificate as the authentication mechanism.

• If you have TLS enabled, select the option to enable TLS/SSL for MongoDB connections, and click Continue.
This should already be selected for you in case you selected X.509 Client Certificate above.

• Wait a minute or two for the deployment to be found and then click the Continue button again.

• Verify that you see your process on the Cloud Manager UI. It should look something like this:

• Click Continue.

• Verify on the UI that data is being sent by the monitoring agent to the Cloud Manager. It may take upto 5
minutes for data to appear on the UI.

Configure MongoDB Cloud Manager for Backup

• Once the Backup Agent is up and running, open MongoDB Cloud Manager.

• Click Login under MongoDB Cloud Manager and log in to the Cloud Manager.

• Select the group from the dropdown box on the page.

• Click Backup tab.

• Hover over the Status column of your backup and click Start to start the backup.

• Select the replica set on the side pane.

• If you have authentication enabled, select the authentication mechanism as per your deployment. The default
BigchainDB production deployment currently supports X.509 Client Certificate as the authentica-
tion mechanism.

44 Chapter 5. Production Deployment Template

https://cloud.mongodb.com

BigchainDB Server Documentation, Release 1.0.1

• If you have TLS enabled, select the checkbox Replica set allows TLS/SSL connections. This
should be selected by default in case you selected X.509 Client Certificate as the auth mechanism
above.

• Choose the WiredTiger storage engine.

• Verify the details of your MongoDB instance and click on Start.

• It may take up to 5 minutes for the backup process to start. During this process, the UI will show the status of
the backup process.

• Verify that data is being backed up on the UI.

How to Configure a BigchainDB Node

This page outlines the steps to set a bunch of configuration settings in your BigchainDB node. They are pushed to
the Kubernetes cluster in two files, named config-map.yaml (a set of ConfigMaps) and secret.yaml (a set of
Secrets). They are stored in the Kubernetes cluster’s key-value store (etcd).

Make sure you did all the things listed in the section titled Things Each Node Operator Must Do (including generation
of all the SSL certificates needed for MongoDB auth).

Edit config-map.yaml

Make a copy of the file k8s/configuration/config-map.yaml and edit the data values in the various Con-
figMaps. That file already contains many comments to help you understand each data value, but we make some
additional remarks on some of the values below.

Note: None of the data values in config-map.yaml need to be base64-encoded. (This is unlike secret.yaml,
where all data values must be base64-encoded. This is true of all Kubernetes ConfigMaps and Secrets.)

vars.mdb-instance-name and Similar

Your BigchainDB cluster organization should have a standard way of naming instances, so the instances in your
BigchainDB node should conform to that standard (i.e. you can’t just make up some names). There are some things
worth noting about the mdb-instance-name:

• MongoDB reads the local /etc/hosts file while bootstrapping a replica set to resolve the hostname provided
to the rs.initiate() command. It needs to ensure that the replica set is being initialized in the same
instance where the MongoDB instance is running.

• We use the value in the mdb-instance-name field to achieve this.

• This field will be the DNS name of your MongoDB instance, and Kubernetes maps this name to its internal
DNS.

• This field will also be used by other MongoDB instances when forming a MongoDB replica set.

• We use mdb-instance-0, mdb-instance-1 and so on in our documentation. Your BigchainDB cluster
may use a different naming convention.

bdb-config.bdb-keyring

This lists the BigchainDB public keys of all other nodes in your BigchainDB cluster (not including the public key of
your BigchainDB node). Cases:

5.13. How to Configure a BigchainDB Node 45

BigchainDB Server Documentation, Release 1.0.1

• If you’re deploying the first node in the cluster, the value should be "" (an empty string).

• If you’re deploying the second node in the cluster, the value should be the
BigchainDB public key of the first/original node in the cluster. For example,
"EPQk5i5yYpoUwGVM8VKZRjM8CYxB6j8Lu8i8SG7kGGce"

• If there are two or more other nodes already in the cluster, the value should be a
colon-separated list of the BigchainDB public keys of those other nodes. For example,
"DPjpKbmbPYPKVAuf6VSkqGCf5jzrEh69Ldef6TrLwsEQ:EPQk5i5yYpoUwGVM8VKZRjM8CYxB6j8Lu8i8SG7kGGce"

bdb-config.bdb-user

This is the user name that BigchainDB uses to authenticate itself to the backend MongoDB database.

We need to specify the user name as seen in the certificate issued to the BigchainDB instance in order to authenticate
correctly. Use the following openssl command to extract the user name from the certificate:

$ openssl x509 -in <path to the bigchaindb certificate> \
-inform PEM -subject -nameopt RFC2253

You should see an output line that resembles:

subject= emailAddress=dev@bigchaindb.com,CN=test-bdb-ssl,OU=BigchainDB-Instance,
→˓O=BigchainDB GmbH,L=Berlin,ST=Berlin,C=DE

The subject line states the complete user name we need to use for this field (bdb-config.bdb-user), i.e.

emailAddress=dev@bigchaindb.com,CN=test-bdb-ssl,OU=BigchainDB-Instance,O=BigchainDB
→˓GmbH,L=Berlin,ST=Berlin,C=DE

Edit secret.yaml

Make a copy of the file k8s/configuration/secret.yaml and edit the data values in the various Secrets.
That file includes many comments to explain the required values. In particular, note that all values must be base64-
encoded. There are tips at the top of the file explaining how to convert values into base64-encoded values.

Your BigchainDB node might not need all the Secrets. For example, if you plan to access the BigchainDB API over
HTTP, you don’t need the https-certs Secret. You can delete the Secrets you don’t need, or set their data values
to "".

Note that ca.pem is just another name for ca.crt (the certificate of your BigchainDB cluster’s self-signed CA).

threescale-credentials.*

If you’re not using 3scale, you can delete the threescale-credentials Secret or leave all the values blank
("").

If you are using 3scale, you can get the value for frontend-api-dns-name using something like echo "your.
nodesubdomain.net" | base64 -w 0

To get the values for secret-token, service-id, version-header and provider-key, login to your
3scale admin, then click APIs and click on Integration for the relevant API. Scroll to the bottom of the page and click
the small link in the lower right corner, labelled Download the NGINX Config files. You’ll get a .zip file. Unzip
it, then open the .conf file and the .lua file. You should be able to find all the values in those files. You have to be
careful because it will have values for all your APIs, and some values vary from API to API. The version-header
is the timestamp in a line that looks like:

46 Chapter 5. Production Deployment Template

BigchainDB Server Documentation, Release 1.0.1

proxy_set_header X-3scale-Version "2017-06-28T14:57:34Z";

Deploy Your config-map.yaml and secret.yaml

You can deploy your edited config-map.yaml and secret.yaml files to your Kubernetes cluster using the
commands:

$ kubectl apply -f config-map.yaml

$ kubectl apply -f secret.yaml

5.13. How to Configure a BigchainDB Node 47

BigchainDB Server Documentation, Release 1.0.1

48 Chapter 5. Production Deployment Template

CHAPTER 6

Develop & Test BigchainDB Server

Set Up & Run a Dev/Test Node

This page explains how to set up a minimal local BigchainDB node for development and testing purposes.

The BigchainDB core dev team develops BigchainDB on recent Ubuntu and Fedora distributions, so we recommend
you use one of those. BigchainDB Server doesn’t work on Windows and Mac OS X (unless you use a VM or contain-
ers).

Option A: Using a Local Dev Machine

Read through the BigchainDB CONTRIBUTING.md file. It outlines the steps to setup a machine for developing and
testing BigchainDB.

With RethinkDB

Create a default BigchainDB config file (in $HOME/.bigchaindb):

$ bigchaindb -y configure rethinkdb

Note: The BigchainDB CLI and the BigchainDB Configuration Settings are documented elsewhere. (Click the links.)

Start RethinkDB using:

$ rethinkdb

You can verify that RethinkDB is running by opening the RethinkDB web interface in your web browser. It should be
at http://localhost:8080/

To run BigchainDB Server, do:

$ bigchaindb start

49

https://github.com/bigchaindb/bigchaindb/blob/master/CONTRIBUTING.md

BigchainDB Server Documentation, Release 1.0.1

You can run all the unit tests to test your installation.

The BigchainDB CONTRIBUTING.md file has more details about how to contribute.

With MongoDB

Create a default BigchainDB config file (in $HOME/.bigchaindb):

$ bigchaindb -y configure mongodb

Note: The BigchainDB CLI and the BigchainDB Configuration Settings are documented elsewhere. (Click the links.)

Start MongoDB 3.4+ using:

$ mongod --replSet=bigchain-rs

You can verify that MongoDB is running correctly by checking the output of the previous command for the line:

waiting for connections on port 27017

To run BigchainDB Server, do:

$ bigchaindb start

You can run all the unit tests to test your installation.

The BigchainDB CONTRIBUTING.md file has more details about how to contribute.

Option B: Using a Local Dev Machine and Docker

You need to have recent versions of Docker Engine and (Docker) Compose.

Build the images:

docker-compose build

Docker with RethinkDB

Note: If you’re upgrading BigchainDB and have previously already built the images, you may need to rebuild them
after the upgrade to install any new dependencies.

Start RethinkDB:

docker-compose up -d rdb

The RethinkDB web interface should be accessible at http://localhost:58080/. Depending on which platform, and/or
how you are running docker, you may need to change localhost for the ip of the machine that is running
docker. As a dummy example, if the ip of that machine was 0.0.0.0, you would access the web interface at:
http://0.0.0.0:58080/.

Start a BigchainDB node:

docker-compose up -d bdb-rdb

You can monitor the logs:

50 Chapter 6. Develop & Test BigchainDB Server

https://github.com/bigchaindb/bigchaindb/blob/master/CONTRIBUTING.md
https://github.com/bigchaindb/bigchaindb/blob/master/CONTRIBUTING.md
https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/

BigchainDB Server Documentation, Release 1.0.1

docker-compose logs -f bdb-rdb

If you wish to run the tests:

docker-compose run --rm bdb-rdb py.test -v -n auto

Docker with MongoDB

Start MongoDB:

docker-compose up -d mdb

MongoDB should now be up and running. You can check the port binding for the MongoDB driver port using:

$ docker-compose port mdb 27017

Start a BigchainDB node:

docker-compose up -d bdb

You can monitor the logs:

docker-compose logs -f bdb

If you wish to run the tests:

docker-compose run --rm bdb py.test -v --database-backend=mongodb

Accessing the HTTP API

A quick check to make sure that the BigchainDB server API is operational:

curl $(docker-compose port bdb 9984)

should give you something like:

{
"keyring": [],
"public_key": "Brx8g4DdtEhccsENzNNV6yvQHR8s9ebhKyXPFkWUXh5e",
"software": "BigchainDB",
"version": "0.6.0"

}

How does the above curl command work? Inside the Docker container, BigchainDB exposes the HTTP API on port
9984. First we get the public port where that port is bound:

docker-compose port bdb 9984

The port binding will change whenever you stop/restart the bdb service. You should get an output similar to:

0.0.0.0:32772

but with a port different from 32772.

Knowing the public port we can now perform a simple GET operation against the root:

6.1. Set Up & Run a Dev/Test Node 51

BigchainDB Server Documentation, Release 1.0.1

curl 0.0.0.0:32772

Option C: Using a Dev Machine on Cloud9

Ian Worrall of Encrypted Labs wrote a document (PDF) explaining how to set up a BigchainDB (Server) dev machine
on Cloud9:

Download that document from GitHub

Running All Tests

All documentation about writing and running tests (unit and integration tests) was moved to the file bigchaindb/
tests/README.md.

52 Chapter 6. Develop & Test BigchainDB Server

http://www.encryptedlabs.com/
https://raw.githubusercontent.com/bigchaindb/bigchaindb/master/docs/server/source/_static/cloud9.pdf
https://github.com/bigchaindb/bigchaindb/blob/master/tests/README.md
https://github.com/bigchaindb/bigchaindb/blob/master/tests/README.md

CHAPTER 7

Settings & CLI

Configuration Settings

The value of each BigchainDB Server configuration setting is determined according to the following rules:

• If it’s set by an environment variable, then use that value

• Otherwise, if it’s set in a local config file, then use that value

• Otherwise, use the default value

For convenience, here’s a list of all the relevant environment variables (documented below):

BIGCHAINDB_KEYPAIR_PUBLIC BIGCHAINDB_KEYPAIR_PRIVATE BIGCHAINDB_KEYRING
BIGCHAINDB_DATABASE_BACKEND BIGCHAINDB_DATABASE_HOST BIGCHAINDB_DATABASE_PORT
BIGCHAINDB_DATABASE_NAME BIGCHAINDB_DATABASE_REPLICASET BIGCHAINDB_DATABASE_CONNECTION_TIMEOUT
BIGCHAINDB_DATABASE_MAX_TRIES BIGCHAINDB_SERVER_BIND BIGCHAINDB_SERVER_LOGLEVEL
BIGCHAINDB_SERVER_WORKERS BIGCHAINDB_WSSERVER_SCHEME BIGCHAINDB_WSSERVER_HOST
BIGCHAINDB_WSSERVER_PORT BIGCHAINDB_CONFIG_PATH BIGCHAINDB_BACKLOG_REASSIGN_DELAY
BIGCHAINDB_LOG BIGCHAINDB_LOG_FILE BIGCHAINDB_LOG_ERROR_FILE
BIGCHAINDB_LOG_LEVEL_CONSOLE BIGCHAINDB_LOG_LEVEL_LOGFILE
BIGCHAINDB_LOG_DATEFMT_CONSOLE BIGCHAINDB_LOG_DATEFMT_LOGFILE
BIGCHAINDB_LOG_FMT_CONSOLE BIGCHAINDB_LOG_FMT_LOGFILE BIGCHAINDB_LOG_GRANULAR_LEVELS
BIGCHAINDB_DATABASE_SSL BIGCHAINDB_DATABASE_LOGIN BIGCHAINDB_DATABASE_PASSWORD
BIGCHAINDB_DATABASE_CA_CERT BIGCHAINDB_DATABASE_CERTFILE BIGCHAINDB_DATABASE_KEYFILE
BIGCHAINDB_DATABASE_KEYFILE_PASSPHRASE BIGCHAINDB_DATABASE_CRLFILE
BIGCHAINDB_GRAPHITE_HOST

The local config file is $HOME/.bigchaindb by default (a file which might not even exist), but you
can tell BigchainDB to use a different file by using the -c command-line option, e.g. bigchaindb -c
path/to/config_file.json start or using the BIGCHAINDB_CONFIG_PATH environment variable, e.g.
BIGHAINDB_CONFIG_PATH=.my_bigchaindb_config bigchaindb start. Note that the -c com-
mand line option will always take precedence if both the BIGCHAINDB_CONFIG_PATH and the -c command line
option are used.

You can read the current default values in the file bigchaindb/__init__.py. (The link is to the latest version.)

53

https://github.com/bigchaindb/bigchaindb/blob/master/bigchaindb/__init__.py

BigchainDB Server Documentation, Release 1.0.1

Running bigchaindb -y configure mongodb will generate a local config file in $HOME/.bigchaindb
with all the default values (for using MongoDB as the database backend), with two exceptions: it will generate a valid
private/public keypair, rather than using the default keypair (None and None).

keypair.public & keypair.private

The cryptographic keypair used by the node. The public key is how the node idenifies itself to the world. The
private key is used to generate cryptographic signatures. Anyone with the public key can verify that the signature was
generated by whoever had the corresponding private key.

Example using environment variables

export BIGCHAINDB_KEYPAIR_PUBLIC=8wHUvvraRo5yEoJAt66UTZaFq9YZ9tFFwcauKPDtjkGw
export BIGCHAINDB_KEYPAIR_PRIVATE=5C5Cknco7YxBRP9AgB1cbUVTL4FAcooxErLygw1DeG2D

Example config file snippet

"keypair": {
"public": "8wHUvvraRo5yEoJAt66UTZaFq9YZ9tFFwcauKPDtjkGw",
"private": "5C5Cknco7YxBRP9AgB1cbUVTL4FAcooxErLygw1DeG2D"

}

Internally (i.e. in the Python code), both keys have a default value of None, but that’s not a valid key. Therefore you
can’t rely on the defaults for the keypair. If you want to run BigchainDB, you must provide a valid keypair, either
in the environment variables or in the local config file. You can generate a local config file with a valid keypair (and
default everything else) using bigchaindb -y configure mongodb.

keyring

A list of the public keys of all the nodes in the cluster, excluding the public key of this node.

Example using an environment variable

export BIGCHAINDB_
→˓KEYRING=BnCsre9MPBeQK8QZBFznU2dJJ2GwtvnSMdemCmod2XPB:4cYQHoQrvPiut3Sjs8fVR1BMZZpJjMTC4bsMTt9V71aQ

Note how the keys in the list are separated by colons.

Example config file snippet

"keyring": ["BnCsre9MPBeQK8QZBFznU2dJJ2GwtvnSMdemCmod2XPB",
"4cYQHoQrvPiut3Sjs8fVR1BMZZpJjMTC4bsMTt9V71aQ"]

Default value (from a config file)

"keyring": []

database.*

The settings with names of the form database.* are for the database backend (currently either MongoDB or
RethinkDB). They are:

• database.backend is either mongodb or rethinkdb.

• database.host is the hostname (FQDN) of the backend database.

54 Chapter 7. Settings & CLI

BigchainDB Server Documentation, Release 1.0.1

• database.port is self-explanatory.

• database.name is a user-chosen name for the database inside MongoDB or RethinkDB, e.g. bigchain.

• database.replicaset is only relevant if using MongoDB; it’s the name of the MongoDB replica set, e.g.
bigchain-rs.

• database.connection_timeout is the maximum number of milliseconds that BigchainDB will wait
before giving up on one attempt to connect to the database backend.

• database.max_tries is the maximum number of times that BigchainDB will try to establish a connection
with the database backend. If 0, then it will try forever.

• database.ssl is a flag that determines if BigchainDB connects to the backend database over TLS/SSL or
not. This can be set to either true or false (the default). Note: This parameter is only supported for the
MongoDB backend currently.

• database.login and database.password are the login and password used to authenticate to the
database before performing any operations, specified in plaintext. The default values for both are currently
null, which means that BigchainDB will not authenticate with the backend database. Note: These parameters
are only supported for the MongoDB backend currently.

• database.ca_cert, database.certfile, database.keyfile and database.crlfile are
the paths to the CA, signed certificate, private key and certificate revocation list files respectively. Note: These
parameters are only supported for the MongoDB backend currently.

• database.keyfile_passphrase is the private key decryption passphrase, specified in plaintext. Note:
This parameter is only supported for the MongoDB backend currently.

Example using environment variables

export BIGCHAINDB_DATABASE_BACKEND=mongodb
export BIGCHAINDB_DATABASE_HOST=localhost
export BIGCHAINDB_DATABASE_PORT=27017
export BIGCHAINDB_DATABASE_NAME=bigchain
export BIGCHAINDB_DATABASE_REPLICASET=bigchain-rs
export BIGCHAINDB_DATABASE_CONNECTION_TIMEOUT=5000
export BIGCHAINDB_DATABASE_MAX_TRIES=3

Default values

If (no environment variables were set and there’s no local config file), or you used bigchaindb -y configure
rethinkdb to create a default local config file for a RethinkDB backend, then the defaults will be:

"database": {
"backend": "rethinkdb",
"host": "localhost",
"port": 28015,
"name": "bigchain",
"connection_timeout": 5000,
"max_tries": 3

}

If you used bigchaindb -y configure mongodb to create a default local config file for a MongoDB backend,
then the defaults will be:

"database": {
"backend": "mongodb",
"host": "localhost",
"port": 27017,
"name": "bigchain",

7.1. Configuration Settings 55

BigchainDB Server Documentation, Release 1.0.1

"replicaset": "bigchain-rs",
"connection_timeout": 5000,
"max_tries": 3,
"login": null,
"password": null
"ssl": false,
"ca_cert": null,
"crlfile": null,
"certfile": null,
"keyfile": null,
"keyfile_passphrase": null,

}

server.bind, server.loglevel & server.workers

These settings are for the Gunicorn HTTP server, which is used to serve the HTTP client-server API.

server.bind is where to bind the Gunicorn HTTP server socket. It’s a string. It can be any valid value for
Gunicorn’s bind setting. If you want to allow IPv4 connections from anyone, on port 9984, use 0.0.0.0:9984.
In a production setting, we recommend you use Gunicorn behind a reverse proxy server. If Gunicorn and the reverse
proxy are running on the same machine, then use localhost:PORT where PORT is not 9984 (because the reverse
proxy needs to listen on port 9984). Maybe use PORT=9983 in that case because we know 9983 isn’t used. If
Gunicorn and the reverse proxy are running on different machines, then use A.B.C.D:9984 where A.B.C.D is the
IP address of the reverse proxy. There’s more information about deploying behind a reverse proxy in the Gunicorn
documentation. (They call it a proxy.)

server.loglevel sets the log level of Gunicorn’s Error log outputs. See Gunicorn’s documentation for more
information.

server.workers is the number of worker processes for handling requests. If None (the default), the value will
be (2 × cpu_count + 1). Each worker process has a single thread. The HTTP server will be able to handle server.
workers requests simultaneously.

Example using environment variables

export BIGCHAINDB_SERVER_BIND=0.0.0.0:9984
export BIGCHAINDB_SERVER_LOGLEVEL=debug
export BIGCHAINDB_SERVER_WORKERS=5

Example config file snippet

"server": {
"bind": "0.0.0.0:9984",
"loglevel": "debug",
"workers": 5,

}

Default values (from a config file)

"server": {
"bind": "localhost:9984",
"loglevel": "info",
"workers": null,

}

56 Chapter 7. Settings & CLI

http://gunicorn.org/
http://docs.gunicorn.org/en/stable/settings.html#bind
http://docs.gunicorn.org/en/stable/deploy.html
http://docs.gunicorn.org/en/stable/deploy.html
http://docs.gunicorn.org/en/latest/settings.html#loglevel
http://docs.gunicorn.org/en/stable/settings.html#workers

BigchainDB Server Documentation, Release 1.0.1

wsserver.scheme, wsserver.host and wsserver.port

These settings are for the aiohttp server, which is used to serve the WebSocket Event Stream API. wsserver.
scheme should be either "ws" or "wss" (but setting it to "wss" does not enable SSL/TLS). wsserver.host
is where to bind the aiohttp server socket and wsserver.port is the corresponding port. If you want to allow
connections from anyone, on port 9985, set wsserver.host to 0.0.0.0 and wsserver.port to 9985.

Example using environment variables

export BIGCHAINDB_WSSERVER_SCHEME=ws
export BIGCHAINDB_WSSERVER_HOST=0.0.0.0
export BIGCHAINDB_WSSERVER_PORT=9985

Example config file snippet

"wsserver": {
"scheme": "wss",
"host": "0.0.0.0",
"port": 65000

}

Default values (from a config file)

"wsserver": {
"scheme": "ws",
"host": "localhost",
"port": 9985

}

backlog_reassign_delay

Specifies how long, in seconds, transactions can remain in the backlog before being reassigned. Long-waiting trans-
actions must be reassigned because the assigned node may no longer be responsive. The default duration is 120
seconds.

Example using environment variables

export BIGCHAINDB_BACKLOG_REASSIGN_DELAY=30

Default value (from a config file)

"backlog_reassign_delay": 120

log

The log key is expected to point to a mapping (set of key/value pairs) holding the logging configuration.

Example:

{
"log": {

"file": "/var/log/bigchaindb.log",
"error_file": "/var/log/bigchaindb-errors.log",
"level_console": "info",
"level_logfile": "info",

7.1. Configuration Settings 57

https://aiohttp.readthedocs.io/en/stable/index.html

BigchainDB Server Documentation, Release 1.0.1

"datefmt_console": "%Y-%m-%d %H:%M:%S",
"datefmt_logfile": "%Y-%m-%d %H:%M:%S",
"fmt_console": "%(asctime)s [%(levelname)s] (%(name)s) %(message)s",
"fmt_logfile": "%(asctime)s [%(levelname)s] (%(name)s) %(message)s",
"granular_levels": {

"bichaindb.backend": "info",
"bichaindb.core": "info"

}
}

Defaults to:

{
"log": {

"file": "~/bigchaindb.log",
"error_file": "~/bigchaindb-errors.log",
"level_console": "info",
"level_logfile": "info",
"datefmt_console": "%Y-%m-%d %H:%M:%S",
"datefmt_logfile": "%Y-%m-%d %H:%M:%S",
"fmt_logfile": "[%(asctime)s] [%(levelname)s] (%(name)s) %(message)s (

→˓%(processName)-10s - pid: %(process)d)",
"fmt_console": "[%(asctime)s] [%(levelname)s] (%(name)s) %(message)s (

→˓%(processName)-10s - pid: %(process)d)",
"granular_levels": {}

}

The next subsections explain each field of the log configuration.

log.file & log.error_file

The full paths to the files where logs and error logs should be written to.

Example:

{
"log": {

"file": "/var/log/bigchaindb/bigchaindb.log"
"error_file": "/var/log/bigchaindb/bigchaindb-errors.log"

}
}

Defaults to:

* `"~/bigchaindb.log"`

* `"~/bigchaindb-errors.log"`

Please note that the user running bigchaindb must have write access to the locations.

Log rotation

Log files have a size limit of 200 MB and will be rotated up to five times.

For example if we consider the log file setting:

58 Chapter 7. Settings & CLI

BigchainDB Server Documentation, Release 1.0.1

{
"log": {

"file": "~/bigchain.log"
}

}

logs would always be written to bigchain.log. Each time the file bigchain.log reaches 200 MB it would be
closed and renamed bigchain.log.1. If bigchain.log.1 and bigchain.log.2 already exist they would
be renamed bigchain.log.2 and bigchain.log.3. This pattern would be applied up to bigchain.log.
5 after which bigchain.log.5 would be overwritten by bigchain.log.4, thus ending the rotation cycle of
whatever logs were in bigchain.log.5.

log.level_console

The log level used to log to the console. Possible allowed values are the ones defined by Python, but case insensitive
for convenience’s sake:

"critical", "error", "warning", "info", "debug", "notset"

Example:

{
"log": {

"level_console": "info"
}

}

Defaults to: "info".

log.level_logfile

The log level used to log to the log file. Possible allowed values are the ones defined by Python, but case insensitive
for convenience’s sake:

"critical", "error", "warning", "info", "debug", "notset"

Example:

{
"log": {

"level_file": "info"
}

}

Defaults to: "info".

log.datefmt_console

The format string for the date/time portion of a message, when logged to the console.

Example:

7.1. Configuration Settings 59

https://docs.python.org/3.6/library/logging.html#levels
https://docs.python.org/3.6/library/logging.html#levels

BigchainDB Server Documentation, Release 1.0.1

{
"log": {

"datefmt_console": "%x %X %Z"
}

}

Defaults to: "%Y-%m-%d %H:%M:%S".

For more information on how to construct the format string please consult the table under Python’s documentation of
time.strftime(format[, t])

log.datefmt_logfile

The format string for the date/time portion of a message, when logged to a log file.

Example:

{
"log": {

"datefmt_logfile": "%c %z"
}

}

Defaults to: "%Y-%m-%d %H:%M:%S".

For more information on how to construct the format string please consult the table under Python’s documentation of
time.strftime(format[, t])

log.fmt_console

A string used to format the log messages when logged to the console.

Example:

{
"log": {

"fmt_console": "%(asctime)s [%(levelname)s] %(message)s %(process)d"
}

}

Defaults to: "[%(asctime)s] [%(levelname)s] (%(name)s) %(message)s
(%(processName)-10s - pid: %(process)d)"

For more information on possible formatting options please consult Python’s documentation on LogRecord attributes

log.fmt_logfile

A string used to format the log messages when logged to a log file.

Example:

{
"log": {

"fmt_logfile": "%(asctime)s [%(levelname)s] %(message)s %(process)d"
}

}

60 Chapter 7. Settings & CLI

https://docs.python.org/3.6/library/time.html#time.strftime
https://docs.python.org/3.6/library/time.html#time.strftime
https://docs.python.org/3.6/library/logging.html#logrecord-attributes

BigchainDB Server Documentation, Release 1.0.1

Defaults to: "[%(asctime)s] [%(levelname)s] (%(name)s) %(message)s
(%(processName)-10s - pid: %(process)d)"

For more information on possible formatting options please consult Python’s documentation on LogRecord attributes

log.granular_levels

Log levels for BigchainDB’s modules. This can be useful to control the log level of specific parts of the application. As
an example, if you wanted the logging of the core.py module to be more verbose, you would set the configuration
shown in the example below.

Example:

{
"log": {

"granular_levels": {
"bichaindb.core": "debug"

}
}

Defaults to: "{}"

graphite.host

The host name or IP address of a server listening for statsd events on UDP port 8125. This defaults to localhost,
and if no statsd collector is running, the events are simply dropped by the operating system.

Example using environment variables

export BIGCHAINDB_GRAPHITE_HOST=10.0.0.5

Example config file snippet

"graphite": {
"host": "10.0.0.5"

}

Default values (from a config file)

"graphite": {
"host": "localhost"

}

Command Line Interface (CLI)

The command-line command to interact with BigchainDB Server is bigchaindb.

bigchaindb –help

Show help for the bigchaindb command. bigchaindb -h does the same thing.

7.2. Command Line Interface (CLI) 61

https://docs.python.org/3.6/library/logging.html#logrecord-attributes

BigchainDB Server Documentation, Release 1.0.1

bigchaindb –version

Show the version number. bigchaindb -v does the same thing.

bigchaindb configure

Generate a local configuration file (which can be used to set some or all BigchainDB node configuration settings). It
will auto-generate a public-private keypair and then ask you for the values of other configuration settings. If you press
Enter for a value, it will use the default value.

Since BigchainDB supports multiple databases you need to always specify the database backend that you want to use.
At this point only two database backends are supported: rethinkdb and mongodb.

If you use the -c command-line option, it will generate the file at the specified path:

bigchaindb -c path/to/new_config.json configure rethinkdb

If you don’t use the -c command-line option, the file will be written to $HOME/.bigchaindb (the default location
where BigchainDB looks for a config file, if one isn’t specified).

If you use the -y command-line option, then there won’t be any interactive prompts: it will just generate a keypair
and use the default values for all the other configuration settings.

bigchaindb -y configure rethinkdb

bigchaindb show-config

Show the values of the BigchainDB node configuration settings.

bigchaindb export-my-pubkey

Write the node’s public key (i.e. one of its configuration values) to standard output (stdout).

bigchaindb init

Create a backend database (RethinkDB or MongoDB), all database tables/collections, various backend database in-
dexes, and the genesis block.

Note: The bigchaindb start command (see below) always starts by trying a bigchaindb init first. If
it sees that the backend database already exists, then it doesn’t re-initialize the database. One doesn’t have to do
bigchaindb init before bigchaindb start. bigchaindb init is useful if you only want to initialize
(but not start).

bigchaindb drop

Drop (erase) the backend database (a RethinkDB or MongoDB database). You will be prompted to make sure. If you
want to force-drop the database (i.e. skipping the yes/no prompt), then use bigchaindb -y drop

62 Chapter 7. Settings & CLI

BigchainDB Server Documentation, Release 1.0.1

bigchaindb start

Start BigchainDB. It always begins by trying a bigchaindb init first. See the note in the documen-
tation for bigchaindb init. You can also use the --dev-start-rethinkdb command line option
to automatically start rethinkdb with bigchaindb if rethinkdb is not already running, e.g. bigchaindb
--dev-start-rethinkdb start. Note that this will also shutdown rethinkdb when the bigchaindb process
stops. The option --dev-allow-temp-keypair will generate a keypair on the fly if no keypair is found, this is
useful when you want to run a temporary instance of BigchainDB in a Docker container, for example.

Options

The log level for the console can be set via the option --log-level or its abbreviation -l. Example:

$ bigchaindb --log-level INFO start

The allowed levels are DEBUG, INFO , WARNING, ERROR, and CRITICAL. For an explanation regarding these levels
please consult the Logging Levels section of Python’s documentation.

For a more fine-grained control over the logging configuration you can use the configuration file as documented under
Configuration Settings.

bigchaindb set-shards

This command is specific to RethinkDB so it will only run if BigchainDB is configured with rethinkdb as the
backend.

If RethinkDB is the backend database, then:

$ bigchaindb set-shards 4

will set the number of shards (in all RethinkDB tables) to 4.

bigchaindb set-replicas

This command is specific to RethinkDB so it will only run if BigchainDB is configured with rethinkdb as the
backend.

If RethinkDB is the backend database, then:

$ bigchaindb set-replicas 3

will set the number of replicas (of each shard) to 3 (i.e. it will set the replication factor to 3).

bigchaindb add-replicas

This command is specific to MongoDB so it will only run if BigchainDB is configured with mongodb as the backend.

This command is used to add nodes to a BigchainDB cluster. It accepts a list of space separated hosts in the form
hostname:port:

$ bigchaindb add-replicas server1.com:27017 server2.com:27017 server3.com:27017

7.2. Command Line Interface (CLI) 63

https://docs.python.org/3.6/library/logging.html#levels

BigchainDB Server Documentation, Release 1.0.1

bigchaindb remove-replicas

This command is specific to MongoDB so it will only run if BigchainDB is configured with mongodb as the backend.

This command is used to remove nodes from a BigchainDB cluster. It accepts a list of space separated hosts in the
form hostname:port:

$ bigchaindb remove-replicas server1.com:27017 server2.com:27017 server3.com:27017

64 Chapter 7. Settings & CLI

CHAPTER 8

The HTTP Client-Server API

This page assumes you already know an API Root URL for a BigchainDB node or reverse proxy. It should be
something like https://example.com:9984 or https://12.34.56.78:9984.

If you set up a BigchainDB node or reverse proxy yourself, and you’re not sure what the API Root URL is, then see
the last section of this page for help.

BigchainDB Root URL

If you send an HTTP GET request to the BigchainDB Root URL e.g. http://localhost:9984 or https://
example.com:9984 (with no /api/v1/ on the end), then you should get an HTTP response with something like
the following in the body:

HTTP/1.1 200 OK
Content-Type: application/json

{
"api": {
"v1": {
"assets": "/api/v1/assets/",
"docs": "https://docs.bigchaindb.com/projects/server/en/v1.0.1/http-client-

→˓server-api.html",
"outputs": "/api/v1/outputs/",
"statuses": "/api/v1/statuses/",
"streams": "ws://localhost:9985/api/v1/streams/valid_transactions",
"transactions": "/api/v1/transactions/"

}
},
"docs": "https://docs.bigchaindb.com/projects/server/en/v1.0.1/",
"keyring": [
"6qHyZew94NMmUTYyHnkZsB8cxJYuRNEiEpXHe1ih9QX3",
"AdDuyrTyjrDt935YnFu4VBCVDhHtY2Y6rcy7x2TFeiRi"

],
"public_key": "NC8c8rYcAhyKVpx1PCV65CBmyq4YUbLysy3Rqrg8L8mz",

65

BigchainDB Server Documentation, Release 1.0.1

"software": "BigchainDB",
"version": "1.0.1"

}

API Root Endpoint

If you send an HTTP GET request to the API Root Endpoint e.g. http://localhost:9984/api/v1/ or
https://example.com:9984/api/v1/, then you should get an HTTP response that allows you to discover
the BigchainDB API endpoints:

HTTP/1.1 200 OK
Content-Type: application/json

{
"assets": "/assets/",
"docs": "https://docs.bigchaindb.com/projects/server/en/v1.0.1/http-client-server-

→˓api.html",
"outputs": "/outputs/",
"statuses": "/statuses/",
"streams": "ws://localhost:9985/api/v1/streams/valid_transactions",
"transactions": "/transactions/"

}

Transactions

GET /api/v1/transactions/{transaction_id}
Get the transaction with the ID transaction_id.

This endpoint returns a transaction if it was included in a VALID block. All instances of a transaction in
invalid/undecided blocks or the backlog are ignored and treated as if they don’t exist. If a request is made for a
transaction and instances of that transaction are found only in invalid/undecided blocks or the backlog, then the
response will be 404 Not Found.

Parameters

• transaction_id (hex string) – transaction ID

Example request:

GET /api/v1/transactions/
→˓8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"asset": {
"data": {
"msg": "Hello BigchainDB!"

}
},

66 Chapter 8. The HTTP Client-Server API

BigchainDB Server Documentation, Release 1.0.1

"id": "8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102",
"inputs": [

{
"fulfillment": "pGSAIDE5i63cn4X8T8N1sZ2mGkJD5lNRnBM4PZgI_zvzbr-

→˓cgUCGvCc2HO2uB4IKix6INRzGIM10r7VsKFMPM9cT7uVJ1xFLOJ9bn6UioepBMLIrrwTlk2CkTolIPonf7BnzriQL
→˓",

"fulfills": null,
"owners_before": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"metadata": {

"sequence": 0
},
"operation": "CREATE",
"outputs": [

{
"amount": "1",
"condition": {

"details": {
"public_key": "4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD",
"type": "ed25519-sha-256"

},
"uri": "ni:///sha-256;PNYwdxaRaNw60N6LDFzOWO97b8tJeragczakL8PrAPc?

→˓fpt=ed25519-sha-256&cost=131072"
},
"public_keys": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"version": "1.0"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A transaction with that ID was found.

• 404 Not Found – A transaction with that ID was not found.

GET /api/v1/transactions
The unfiltered /api/v1/transactions endpoint without any query parameters returns a status code 400.
For valid filters, see the sections below.

There are however filtered requests that might come of use, given the endpoint is queried correctly. Some of
them include retrieving a list of transactions that include:

•Transactions related to a specific asset

In this section, we’ve listed those particular requests, as they will likely to be very handy when implementing
your application on top of BigchainDB.

Note: Looking up transactions with a specific metadata field is currently not supported, however, providing

8.3. Transactions 67

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

BigchainDB Server Documentation, Release 1.0.1

a way to query based on metadata data is on our roadmap.

A generalization of those parameters follows:

Query Parameters

• asset_id (string) – The ID of the asset.

• operation (string) – (Optional) One of the two supported operations of a transaction:
CREATE, TRANSFER.

GET /api/v1/transactions?asset_id={asset_id}&operation={CREATE|TRANSFER}
Get a list of transactions that use an asset with the ID asset_id. Every TRANSFER transaction that originates
from a CREATE transaction with asset_id will be included. This allows users to query the entire history or
provenance of an asset.

This endpoint returns transactions only if they are decided VALID by the server.

Query Parameters

• operation (string) – (Optional) One of the two supported operations of a transaction:
CREATE, TRANSFER.

• asset_id (string) – asset ID.

Example request:

GET /api/v1/transactions?operation=TRANSFER&asset_
→˓id=8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[{
"asset": {
"id": "8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102"

},
"id": "7d3ed7e5bcad27b878a4e3f25363c8b03f49fa5007f6e6032d9ec38e36bc2e83",
"inputs": [

{
"fulfillment": "pGSAIDE5i63cn4X8T8N1sZ2mGkJD5lNRnBM4PZgI_zvzbr-

→˓cgUA11pDN83PjcBhuH-
→˓ICqy6cbyxeXrHQBgHXhbulDInXoMPsVeOJp65Wsxr0WO6kmJvwgA7Je1UgzNJZ6pWb3kcL",

"fulfills": {
"output_index": 0,
"transaction_id":

→˓"8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102"
},
"owners_before": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"metadata": {

"sequence": 1
},
"operation": "TRANSFER",
"outputs": [

68 Chapter 8. The HTTP Client-Server API

BigchainDB Server Documentation, Release 1.0.1

{
"amount": "1",
"condition": {
"details": {

"public_key": "3yfQPHeWAa1MxTX9Zf9176QqcpcnWcanVZZbaHb8B3h9",
"type": "ed25519-sha-256"

},
"uri": "ni:///sha-256;lu6ov4AKkee6KWGnyjOVLBeyuP0bz4-O6_dPi15eYUc?

→˓fpt=ed25519-sha-256&cost=131072"
},
"public_keys": [
"3yfQPHeWAa1MxTX9Zf9176QqcpcnWcanVZZbaHb8B3h9"

]
}

],
"version": "1.0"

},
{
"asset": {

"id": "8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102"
},
"id": "d07285a60352838ff263a46ba8cca64e18d36888aee0ba76d5d601137b492fc6",
"inputs": [

{
"fulfillment": "pGSAICw7Ul-c2lG6NFbHp3FbKRC7fivQcNGO7GS4wV3A-

→˓1QggUBRFFWoFwJhWGhbt02I3NPIBT84qzNB1-
→˓dTyuj1zvUfVmY7fn1GAqI6A6pPRch36hYF4Gup2R0DFdAitEHxhB4K",

"fulfills": {
"output_index": 0,
"transaction_id":

→˓"7d3ed7e5bcad27b878a4e3f25363c8b03f49fa5007f6e6032d9ec38e36bc2e83"
},
"owners_before": [
"3yfQPHeWAa1MxTX9Zf9176QqcpcnWcanVZZbaHb8B3h9"

]
}

],
"metadata": {

"sequence": 2
},
"operation": "TRANSFER",
"outputs": [

{
"amount": "1",
"condition": {

"details": {
"public_key": "3Af3fhhjU6d9WecEM9Uw5hfom9kNEwE7YuDWdqAUssqm",
"type": "ed25519-sha-256"

},
"uri": "ni:///sha-256;Ll1r0LzgHUvWB87yIrNFYo731MMUEypqvrbPATTbuD4?

→˓fpt=ed25519-sha-256&cost=131072"
},
"public_keys": [
"3Af3fhhjU6d9WecEM9Uw5hfom9kNEwE7YuDWdqAUssqm"

]
}

],
"version": "1.0"

8.3. Transactions 69

BigchainDB Server Documentation, Release 1.0.1

}]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A list of transactions containing an asset with ID asset_id was found and
returned.

• 400 Bad Request – The request wasn’t understood by the server, e.g. the asset_id querys-
tring was not included in the request.

POST /api/v1/transactions
Push a new transaction.

Note: The posted transaction should be structurally valid and not spending an already spent output. The steps
to build a valid transaction are beyond the scope of this page. One would normally use a driver such as the
BigchainDB Python Driver to build a valid transaction.

Example request:

POST /api/v1/transactions/ HTTP/1.1
Host: example.com
Content-Type: application/json

{
"asset": {
"data": {
"msg": "Hello BigchainDB!"

}
},
"id": "8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102",
"inputs": [

{
"fulfillment": "pGSAIDE5i63cn4X8T8N1sZ2mGkJD5lNRnBM4PZgI_zvzbr-

→˓cgUCGvCc2HO2uB4IKix6INRzGIM10r7VsKFMPM9cT7uVJ1xFLOJ9bn6UioepBMLIrrwTlk2CkTolIPonf7BnzriQL
→˓",

"fulfills": null,
"owners_before": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"metadata": {

"sequence": 0
},
"operation": "CREATE",
"outputs": [

{
"amount": "1",
"condition": {
"details": {

"public_key": "4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD",
"type": "ed25519-sha-256"

},

70 Chapter 8. The HTTP Client-Server API

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://docs.bigchaindb.com/projects/server/en/latest/data-models/transaction-model.html
https://docs.bigchaindb.com/projects/py-driver/en/latest/index.html

BigchainDB Server Documentation, Release 1.0.1

"uri": "ni:///sha-256;PNYwdxaRaNw60N6LDFzOWO97b8tJeragczakL8PrAPc?
→˓fpt=ed25519-sha-256&cost=131072"

},
"public_keys": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"version": "1.0"

}

Example response:

HTTP/1.1 202 Accepted
Location: ../statuses?transaction_
→˓id=8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102
Content-Type: application/json

{
"asset": {

"data": {
"msg": "Hello BigchainDB!"

}
},
"id": "8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102",
"inputs": [

{
"fulfillment": "pGSAIDE5i63cn4X8T8N1sZ2mGkJD5lNRnBM4PZgI_zvzbr-

→˓cgUCGvCc2HO2uB4IKix6INRzGIM10r7VsKFMPM9cT7uVJ1xFLOJ9bn6UioepBMLIrrwTlk2CkTolIPonf7BnzriQL
→˓",

"fulfills": null,
"owners_before": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"metadata": {

"sequence": 0
},
"operation": "CREATE",
"outputs": [

{
"amount": "1",
"condition": {
"details": {

"public_key": "4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD",
"type": "ed25519-sha-256"

},
"uri": "ni:///sha-256;PNYwdxaRaNw60N6LDFzOWO97b8tJeragczakL8PrAPc?

→˓fpt=ed25519-sha-256&cost=131072"
},
"public_keys": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"version": "1.0"

}

8.3. Transactions 71

BigchainDB Server Documentation, Release 1.0.1

Note: If the server is returning a 202 HTTP status code, then the transaction has been accepted for processing.
To check the status of the transaction, poll the link to the status monitor provided in the Location header or
listen to server’s WebSocket Event Stream API.

Response Headers

• Content-Type – application/json

• Location – Relative link to a status monitor for the submitted transaction.

Status Codes

• 202 Accepted – The pushed transaction was accepted in the BACKLOG, but the processing
has not been completed.

• 400 Bad Request – The transaction was malformed and not accepted in the BACKLOG.

Transaction Outputs

The /api/v1/outputs endpoint returns transactions outputs filtered by a given public key, and optionally filtered
to only include either spent or unspent outputs.

GET /api/v1/outputs
Get transaction outputs by public key. The public_key parameter must be a base58 encoded ed25519 public
key associated with transaction output ownership.

Returns a list of transaction outputs.

Parameters

• public_key – Base58 encoded public key associated with output ownership. This pa-
rameter is mandatory and without it the endpoint will return a 400 response code.

• spent – Boolean value (“true” or “false”) indicating if the result set should include only
spent or only unspent outputs. If not specified the result includes all the outputs (both spent
and unspent) associated with the public_key.

GET /api/v1/outputs?public_key={public_key}

Return all outputs, both spent and unspent, for the public_key.

Example request:

GET /api/v1/outputs?public_key=1AAAbbb...ccc HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"output_index": 0,
"transaction_id":

→˓"2d431073e1477f3073a4693ac7ff9be5634751de1b8abaa1f4e19548ef0b4b0e"
},
{

72 Chapter 8. The HTTP Client-Server API

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://tools.ietf.org/html/rfc7231#section-7.1.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

BigchainDB Server Documentation, Release 1.0.1

"output_index": 1,
"transaction_id":

→˓"2d431073e1477f3073a4693ac7ff9be5634751de1b8abaa1f4e19548ef0b4b0e"
}

]

Status Codes

• 200 OK – A list of outputs were found and returned in the body of the response.

• 400 Bad Request – The request wasn’t understood by the server, e.g. the public_key
querystring was not included in the request.

GET /api/v1/outputs?public_key={public_key}&spent=true

Return all spent outputs for public_key.

Example request:

GET /api/v1/outputs?public_key=1AAAbbb...ccc&spent=true HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"output_index": 0,
"transaction_id":

→˓"2d431073e1477f3073a4693ac7ff9be5634751de1b8abaa1f4e19548ef0b4b0e"
}

]

Status Codes

• 200 OK – A list of outputs were found and returned in the body of the response.

• 400 Bad Request – The request wasn’t understood by the server, e.g. the public_key
querystring was not included in the request.

GET /api/v1/outputs?public_key={public_key}&spent=false

Return all unspent outputs for public_key.

Example request:

GET /api/v1/outputs?public_key=1AAAbbb...ccc&spent=false HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"output_index": 1,

8.4. Transaction Outputs 73

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

BigchainDB Server Documentation, Release 1.0.1

"transaction_id":
→˓"2d431073e1477f3073a4693ac7ff9be5634751de1b8abaa1f4e19548ef0b4b0e"
}

]

Status Codes

• 200 OK – A list of outputs were found and returned in the body of the response.

• 400 Bad Request – The request wasn’t understood by the server, e.g. the public_key
querystring was not included in the request.

Statuses

GET /api/v1/statuses
Get the status of an asynchronously written transaction or block by their id.

Query Parameters

• transaction_id (string) – transaction ID

• block_id (string) – block ID

Note: Exactly one of the transaction_id or block_id query parameters must be used together with this
endpoint (see below for getting transaction statuses and block statuses).

GET /api/v1/statuses?transaction_id={transaction_id}

Get the status of a transaction.

The possible status values are undecided, valid or backlog. If a transaction in neither of
those states is found, a 404 Not Found HTTP status code is returned. We’re currently looking
into ways to unambigously let the user know about a transaction’s status that was included in an
invalid block.

Example request:

GET /statuses?transaction_
→˓id=8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "valid"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A transaction with that ID was found.

74 Chapter 8. The HTTP Client-Server API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://github.com/bigchaindb/bigchaindb/issues/1039
https://github.com/bigchaindb/bigchaindb/issues/1039
https://github.com/bigchaindb/bigchaindb/issues/1039
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

BigchainDB Server Documentation, Release 1.0.1

• 404 Not Found – A transaction with that ID was not found.

GET /api/v1/statuses?block_id={block_id}

Get the status of a block.

The possible status values are undecided, valid or invalid.

Example request:

GET /api/v1/statuses?block_
→˓id=80c6fedbe2960470a3af2684167a555a5de16caf4e6d4b217e2847fe394da069 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "valid"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A block with that ID was found.

• 404 Not Found – A block with that ID was not found.

Assets

GET /api/v1/assets
Return all the assets that match a given text search.

Query Parameters

• text search (string) – Text search string to query.

• limit (int) – (Optional) Limit the number of returned assets. Defaults to 0 meaning
return all matching assets.

Note: Currently this enpoint is only supported if the server is running MongoDB as the backend.

GET /api/v1/assets?search={text_search}

Return all assets that match a given text search. The id of the asset is the same id of the transaction
that created the asset.

If no assets match the text search it returns an empty list.

If the text string is empty or the server does not support text search, a 400 is returned.

The results are sorted by text score. For more information about the behavior of text search see
MongoDB text search behavior

8.6. Assets 75

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://docs.mongodb.com/manual/reference/operator/query/text/#behavior

BigchainDB Server Documentation, Release 1.0.1

Example request:

GET /api/v1/assets/?search=bigchaindb HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-type: application/json

[
{

"data": {"msg": "Hello BigchainDB 1!"},
"id": "51ce82a14ca274d43e4992bbce41f6fdeb755f846e48e710a3bbb3b0cf8e4204"

},
{

"data": {"msg": "Hello BigchainDB 2!"},
"id": "b4e9005fa494d20e503d916fa87b74fe61c079afccd6e084260674159795ee31"

},
{

"data": {"msg": "Hello BigchainDB 3!"},
"id": "fa6bcb6a8fdea3dc2a860fcdc0e0c63c9cf5b25da8b02a4db4fb6a2d36d27791"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – The query was executed successfully.

• 400 Bad Request – The query was not executed successfully. Returned if the text string is
empty or the server does not support text search.

GET /api/v1/assets?search={text_search}&limit={n_documents}

Return at most n assets that match a given text search.

If no assets match the text search it returns an empty list.

If the text string is empty or the server does not support text search, a 400 is returned.

The results are sorted by text score. For more information about the behavior of text search see
MongoDB text search behavior

Example request:

GET /api/v1/assets/?search=bigchaindb&limit=2 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-type: application/json

[
{

"data": {"msg": "Hello BigchainDB 1!"},
"id": "51ce82a14ca274d43e4992bbce41f6fdeb755f846e48e710a3bbb3b0cf8e4204"

76 Chapter 8. The HTTP Client-Server API

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://docs.mongodb.com/manual/reference/operator/query/text/#behavior

BigchainDB Server Documentation, Release 1.0.1

},
{

"data": {"msg": "Hello BigchainDB 2!"},
"id": "b4e9005fa494d20e503d916fa87b74fe61c079afccd6e084260674159795ee31"

},
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – The query was executed successfully.

• 400 Bad Request – The query was not executed successfully. Returned if the text string is
empty or the server does not support text search.

Advanced Usage

The following endpoints are more advanced and meant for debugging and transparency purposes.

More precisely, the blocks endpoint allows you to retrieve a block by block_id as well the list of blocks that a
certain transaction with transaction_id occured in (a transaction can occur in multiple invalid blocks until
it either gets rejected or validated by the system). This endpoint gives the ability to drill down on the lifecycle of a
transaction

The votes endpoint contains all the voting information for a specific block. So after retrieving the block_id for a
given transaction_id, one can now simply inspect the votes that happened at a specific time on that block.

Blocks

GET /api/v1/blocks/{block_id}
Get the block with the ID block_id. Any blocks, be they VALID, UNDECIDED or INVALIDwill be returned.
To check a block’s status independently, use the Statuses endpoint. To check the votes on a block, have a look
at the votes endpoint.

Parameters

• block_id (hex string) – block ID

Example request:

GET /api/v1/blocks/
→˓80c6fedbe2960470a3af2684167a555a5de16caf4e6d4b217e2847fe394da069 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"block": {
"node_pubkey": "DngBurxfeNVKZWCEcDnLj1eMPAS7focUZTE5FndFGuHT",
"timestamp": "1500018524",

8.7. Advanced Usage 77

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

BigchainDB Server Documentation, Release 1.0.1

"transactions": [
{
"asset": {
"data": {
"msg": "Hello BigchainDB!"

}
},
"id": "8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102",
"inputs": [

{
"fulfillment": "pGSAIDE5i63cn4X8T8N1sZ2mGkJD5lNRnBM4PZgI_zvzbr-

→˓cgUCGvCc2HO2uB4IKix6INRzGIM10r7VsKFMPM9cT7uVJ1xFLOJ9bn6UioepBMLIrrwTlk2CkTolIPonf7BnzriQL
→˓",

"fulfills": null,
"owners_before": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"metadata": {

"sequence": 0
},
"operation": "CREATE",
"outputs": [
{
"amount": "1",
"condition": {
"details": {
"public_key": "4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD",
"type": "ed25519-sha-256"

},
"uri": "ni:///sha-256;PNYwdxaRaNw60N6LDFzOWO97b8tJeragczakL8PrAPc?

→˓fpt=ed25519-sha-256&cost=131072"
},
"public_keys": [
"4K9sWUMFwTgaDGPfdynrbxWqWS6sWmKbZoTjxLtVUibD"

]
}

],
"version": "1.0"

}
],
"voters": [
"DngBurxfeNVKZWCEcDnLj1eMPAS7focUZTE5FndFGuHT"

]
},
"id": "80c6fedbe2960470a3af2684167a555a5de16caf4e6d4b217e2847fe394da069",
"signature":

→˓"53wxrEQDYk1dXzmvNSytbCfmNVnPqPkDQaTnAe8Jf43s6ssejPxezkCvUnGTnduNUmaLjhaan1iRLi3peu6s5DzA
→˓"
}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A block with that ID was found.

78 Chapter 8. The HTTP Client-Server API

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

BigchainDB Server Documentation, Release 1.0.1

• 400 Bad Request – The request wasn’t understood by the server, e.g. just requesting /
blocks without the block_id.

• 404 Not Found – A block with that ID was not found.

GET /api/v1/blocks
The unfiltered /blocks endpoint without any query parameters returns a 400 status code. The
list endpoint should be filtered with a transaction_id query parameter, see the /blocks?
transaction_id={transaction_id}&status={UNDECIDED|VALID|INVALID} endpoint.

Example request:

GET /api/v1/blocks HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 400 Bad Request

Status Codes

• 400 Bad Request – The request wasn’t understood by the server, e.g. just requesting /
blocks without the block_id.

GET /api/v1/blocks?transaction_id={transaction_id}&status={UNDECIDED|VALID|INVALID}
Retrieve a list of block_id with their corresponding status that contain a transaction with the ID
transaction_id.

Any blocks, be they UNDECIDED, VALID or INVALID will be returned if no status filter is provided.

Note: In case no block was found, an empty list and an HTTP status code 200 OK is returned, as the request
was still successful.

Query Parameters

• transaction_id (string) – transaction ID (required)

• status (string) – Filter blocks by their status. One of VALID, UNDECIDED or
INVALID.

Example request:

GET /api/v1/blocks?transaction_
→˓id=8b20dbe164badd5ca0611b0e233aef9acce609fbca20f787fc7d926f300d0102 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"8f9a1d1d2d3e57a5151074a4e5c352dfe7c0276d4e469db3da11dcad2266c9c4",
"80c6fedbe2960470a3af2684167a555a5de16caf4e6d4b217e2847fe394da069"

]

8.7. Advanced Usage 79

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

BigchainDB Server Documentation, Release 1.0.1

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A list of blocks containing a transaction with ID transaction_id was found
and returned.

• 400 Bad Request – The request wasn’t understood by the server, e.g. just requesting /
blocks, without defining transaction_id.

Votes

GET /api/v1/votes?block_id={block_id}
Retrieve a list of votes for a certain block with ID block_id. To check for the validity of a vote, a user of this
endpoint needs to perform the following steps:

1.Check if the vote’s node_pubkey is allowed to vote.

2.Verify the vote’s signature against the vote’s body (vote.vote) and node_pubkey.

Query Parameters

• block_id (string) – The block ID to filter the votes.

Example request:

GET /api/v1/votes?block_
→˓id=80c6fedbe2960470a3af2684167a555a5de16caf4e6d4b217e2847fe394da069 HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[{
"node_pubkey": "DngBurxfeNVKZWCEcDnLj1eMPAS7focUZTE5FndFGuHT",
"signature":

→˓"zoaBfntAv87aKnc2dT2uqABW8HMzfFVB8WiSiN7U9Sw1tSJgjBNMagJYFDicjVvWdRnvz4Qt3YVyM8AzBGUoe3Z
→˓",
"vote": {
"invalid_reason": null,
"is_block_valid": true,
"previous_block":

→˓"0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef",
"timestamp": "1500018524",
"voting_for_block":

→˓"80c6fedbe2960470a3af2684167a555a5de16caf4e6d4b217e2847fe394da069"
}

}]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – A list of votes voting for a block with ID block_id was found and returned.

80 Chapter 8. The HTTP Client-Server API

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://github.com/bigchaindb/bigchaindb/blob/8ebd93ed3273e983f5770b1617292aadf9f1462b/bigchaindb/util.py#L119
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

BigchainDB Server Documentation, Release 1.0.1

• 400 Bad Request – The request wasn’t understood by the server, e.g. just requesting /
votes, without defining block_id.

Determining the API Root URL

When you start BigchainDB Server using bigchaindb start, an HTTP API is exposed at some address. The
default is:

http://localhost:9984/api/v1/

It’s bound to localhost, so you can access it from the same machine, but it won’t be directly accessible from the
outside world. (The outside world could connect via a SOCKS proxy or whatnot.)

The documentation about BigchainDB Server Configuration Settings has a section about how to set server.bind
so as to make the HTTP API publicly accessible.

If the API endpoint is publicly accessible, then the public API Root URL is determined as follows:

• The public IP address (like 12.34.56.78) is the public IP address of the machine exposing the HTTP API to
the public internet (e.g. either the machine hosting Gunicorn or the machine running the reverse proxy such as
Nginx). It’s determined by AWS, Azure, Rackspace, or whoever is hosting the machine.

• The DNS hostname (like example.com) is determined by DNS records, such as an “A Record” associating
example.com with 12.34.56.78

• The port (like 9984) is determined by the server.bind setting if Gunicorn is exposed directly to the public
Internet. If a reverse proxy (like Nginx) is exposed directly to the public Internet instead, then it could expose
the HTTP API on whatever port it wants to. (It should expose the HTTP API on port 9984, but it’s not bound to
do that by anything other than convention.)

8.8. Determining the API Root URL 81

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

BigchainDB Server Documentation, Release 1.0.1

82 Chapter 8. The HTTP Client-Server API

CHAPTER 9

The WebSocket Event Stream API

Important: The WebSocket Event Stream runs on a different port than the Web API. The default port for the Web
API is 9984, while the one for the Event Stream is 9985.

BigchainDB provides real-time event streams over the WebSocket protocol with the Event Stream API. Connecting to
an event stream from your application enables a BigchainDB node to notify you as events occur, such as new validated
transactions.

Demoing the API

You may be interested in demoing the Event Stream API with the WebSocket echo test to familiarize yourself before
attempting an integration.

Determining Support for the Event Stream API

It’s a good idea to make sure that the node you’re connecting with has advertised support for the Event Stream API. To
do so, send a HTTP GET request to the node’s API Root Endpoint (e.g. http://localhost:9984/api/v1/)
and check that the response contains a streams property:

{
...,
"streams": "ws://example.com:9985/api/v1/streams/valid_transactions",
...

}

83

http://websocket.org/echo.html

BigchainDB Server Documentation, Release 1.0.1

Connection Keep-Alive

The Event Stream API initially does not provide any mechanisms for connection keep-alive other than enabling TCP
keepalive on each open WebSocket connection. In the future, we may add additional functionality to handle ping/pong
frames or payloads designed for keep-alive.

Streams

Each stream is meant as a unidirectional communication channel, where the BigchainDB node is the only party sending
messages. Any messages sent to the BigchainDB node will be ignored.

Streams will always be under the WebSocket protocol (so ws:// or wss://) and accessible as extensions to the
/api/v<version>/streams/ API root URL (for example, validated transactions would be accessible under
/api/v1/streams/valid_transactions). If you’re running your own BigchainDB instance and need help
determining its root URL, then see the page titled Determining the API Root URL.

All messages sent in a stream are in the JSON format.

Note: For simplicity, BigchainDB initially only provides a stream for all validated transactions. In the future, we may
provide streams for other information, such as new blocks, new votes, or invalid transactions. We may also provide
the ability to filter the stream for specific qualities, such as a specific output‘s public_key.

If you have specific use cases that you think would fit as part of this API, feel free to reach out via Gitter or email.

Valid Transactions

/valid_transactions

Streams an event for any newly validated transactions. Message bodies contain the transaction’s ID, associated asset
ID, and containing block’s ID.

Example message:

{
"transaction_id": "<sha3-256 hash>",
"asset_id": "<sha3-256 hash>",
"block_id": "<sha3-256 hash>"

}

Note: Transactions in BigchainDB are validated in batches (“blocks”) and will, therefore, be streamed in batches.
Each block can contain up to a 1000 transactions, ordered by the time at which they were included in the block. The
/valid_transactions stream will send these transactions in the same order that the block stored them in, but
this does NOT guarantee that you will recieve the events in that same order.

84 Chapter 9. The WebSocket Event Stream API

https://gitter.im/bigchaindb/bigchaindb
mailto:product@bigchaindb.com

CHAPTER 10

Drivers & Tools

Libraries and Tools Maintained by the BigchainDB Team

• Python Driver

• JavaScript / Node.js Driver

• The Transaction CLI is a command-line interface for building BigchainDB transactions. You may be able to
call it from inside the language of your choice, and then use the HTTP API to post transactions.

Community-Driven Libraries and Tools

Note: Some of these projects are a work in progress, but may still be useful.

• Haskell transaction builder

• Go driver

• Java driver

• Ruby driver

85

https://docs.bigchaindb.com/projects/py-driver/en/latest/index.html
https://github.com/bigchaindb/js-bigchaindb-driver
https://docs.bigchaindb.com/projects/cli/en/latest/
https://github.com/bigchaindb/bigchaindb-hs
https://github.com/zbo14/envoke/blob/master/bigchain/bigchain.go
https://github.com/mgrand/bigchaindb-java-driver
https://github.com/LicenseRocks/bigchaindb_ruby

BigchainDB Server Documentation, Release 1.0.1

86 Chapter 10. Drivers & Tools

CHAPTER 11

Data Models

BigchainDB stores all data in the underlying database as JSON documents (conceptually, at least). There are three
main kinds:

1. Transactions, which contain assets, inputs, outputs, and other things

2. Blocks

3. Votes

This section unpacks each one in turn.

The Transaction Model

A transaction has the following structure:

{
"id": "<ID of the transaction>",
"version": "<Transaction schema version number>",
"inputs": ["<List of inputs>"],
"outputs": ["<List of outputs>"],
"operation": "<String>",
"asset": {"<Asset model; see below>"},
"metadata": {"<Arbitrary transaction metadata>"}

}

Here’s some explanation of the contents:

• id: The ID of the transaction and also the hash of the transaction (loosely speaking). See below for an explana-
tion of how it’s computed. It’s also the database primary key.

• version: The version-number of the transaction schema. As of BigchainDB Server 1.0.0, the only allowed value
is "1.0".

87

BigchainDB Server Documentation, Release 1.0.1

• inputs: List of inputs. Each input spends/transfers a previous output by satisfying/fulfilling the crypto-
conditions on that output. A CREATE transaction should have exactly one input. A TRANSFER transaction
should have at least one input (i.e. 1). For more details, see the subsection about inputs.

• outputs: List of outputs. Each output indicates the crypto-conditions which must be satisfied by anyone wishing
to spend/transfer that output. It also indicates the number of shares of the asset tied to that output. For more
details, see the subsection about outputs.

• operation: A string indicating what kind of transaction this is, and how it should be validated. It can only
be "CREATE", "TRANSFER" or "GENESIS" (but there should only be one transaction whose operation is
"GENESIS": the one in the GENESIS block).

• asset: A JSON document for the asset associated with the transaction. (A transaction can only be associated
with one asset.) See the page about the asset model.

• metadata: User-provided transaction metadata. It can be any valid JSON document, or null.

How the transaction ID is computed. 1) Build a Python dictionary containing version, inputs, outputs,
operation, asset, metadata and their values, 2) In each of the inputs, replace the value of each fulfillment
with null, 3) Serialize that dictionary, 4) The transaction ID is just the SHA3-256 hash of the serialized dictionary.

About signing the transaction. Later, when we get to the models for the block and the vote, we’ll see that both
include a signature (from the node which created it). You may wonder why transactions don’t have signatures. . . The
answer is that they do! They’re just hidden inside the fulfillment string of each input. What gets signed (as of
version 1.0.0) is everything inside the transaction, including the id, but the value of each fulfillment is replaced
with null.

There are example BigchainDB transactions in the HTTP API documentation and the Python Driver documentation.

The Asset Model

To avoid redundant data in transactions, the asset model is different for CREATE and TRANSFER transactions.

In a CREATE transaction, the "asset" must contain exactly one key-value pair. The key must be "data" and the
value can be any valid JSON document, or null. For example:

{
"data": {

"desc": "Gold-inlay bookmark owned by Xavier Bellomat Dickens III",
"xbd_collection_id": 1857

}
}

In a TRANSFER transaction, the "asset" must contain exactly one key-value pair. They key must be "id" and the
value must contain a transaction ID (i.e. a SHA3-256 hash: the ID of the CREATE transaction which created the asset,
which also serves as the asset ID). For example:

{
"id": "38100137cea87fb9bd751e2372abb2c73e7d5bcf39d940a5516a324d9c7fb88d"

}

Inputs and Outputs

There’s a high-level overview of inputs and outputs in the root docs page about transaction concepts.

88 Chapter 11. Data Models

https://docs.bigchaindb.com/projects/py-driver/en/latest/usage.html
https://docs.bigchaindb.com/en/latest/transaction-concepts.html

BigchainDB Server Documentation, Release 1.0.1

BigchainDB is modelled around assets, and inputs and outputs are the mechanism by which control of an asset (or
shares of an asset) is transferred. Amounts of an asset are encoded in the outputs of a transaction, and each output
may be spent separately. To spend an output, the output’s condition must be met by an input that provides
a corresponding fulfillment. Each output may be spent at most once, by a single input. Note that any asset
associated with an output holding an amount greater than one is considered a divisible asset that may be split up in
future transactions.

Inputs

An input has the following structure:

{
"owners_before": ["<The public_keys list in the output being spent>"],
"fulfillment": "<Fulfillment URI fulfilling the condition of the output being

→˓spent>",
"fulfills": {

"output_index": "<Index of the output being spent (an integer)>",
"transaction_id": "<ID of the transaction containing the output being spent>"

}
}

You can think of the fulfills object as a pointer to an output on another transaction: the output that this in-
put is spending/transferring. A CREATE transaction should have exactly one input. That input can contain one or
more owners_before, a fulfillment (with one signature from each of the owners-before), and the value of
fulfills should be null). A TRANSFER transaction should have at least one input, and the value of fulfills
should not be null. See the reference on inputs for more description about the meaning of each field.

To calculate a fulfillment URI, you can use one of the BigchainDB drivers or transaction-builders, or use a low-level
crypto-conditions library as illustrated in the page about Handcrafting Transactions.

Outputs

An output has the following structure:

{
"condition": {"<Condition object>"},
"public_keys": ["<List of all public keys associated with the condition object>"],
"amount": "<Number of shares of the asset (an integer in a string)>"

}

The list of public_keys is always the “owners” of the asset at the time the transaction completed, but before the
next transaction started. See the reference on outputs for more description about the meaning of each field.

Below is a high-level description of what goes into building a condition object. To construct an actual condition
object, you can use one of the BigchainDB drivers or transaction-builders, or use a low-level crypto-conditions library
as illustrated in the page about Handcrafting Transactions.

Conditions

At a high level, a condition is like a lock on an output. If can you satisfy the condition, you can unlock the output
and transfer/spend it. BigchainDB Server v1.0 supports a subset of the ILP Crypto-Conditions (version 02 of Crypto-
Conditions).

The simplest supported condition is a simple signature condition. Such a condition could be stated as, “You can satisfy
this condition if you send me a message and a cryptographic signature of that message, produced using the private key

11.3. Inputs and Outputs 89

https://docs.bigchaindb.com/projects/py-driver/en/latest/handcraft.html
https://docs.bigchaindb.com/projects/py-driver/en/latest/handcraft.html
https://tools.ietf.org/html/draft-thomas-crypto-conditions-02
https://tools.ietf.org/html/draft-thomas-crypto-conditions-02

BigchainDB Server Documentation, Release 1.0.1

corresponding to this public key.” The public key is put in the output. BigchainDB currently only supports ED25519
signatures.

A more complex condition can be composed by using n simple signature conditions as inputs to an m-of-n threshold
condition (a logic gate which outputs TRUE if and only if m or more inputs are TRUE). If there are n inputs to a
threshold condition:

• 1-of-n is the same as a logical OR of all the inputs

• n-of-n is the same as a logical AND of all the inputs

For example, one could create a condition requiring m (of n) signatures before their asset can be transferred.

The (single) output of a threshold condition can be used as one of the inputs of other threshold conditions. This means
that one can combine threshold conditions to build complex logical expressions, e.g. (x OR y) AND (u OR v).

When one creates a condition, one can calculate its cost, an estimate of the resources that would be required to
validate the fulfillment. A BigchainDB federation can put an upper limit on the complexity of each condition, either
directly by setting a maximum allowed cost, or indirectly by setting a maximum allowed transaction size which would
limit the overall complexity accross all inputs and outputs of a transaction. Note: At the time of writing, there was no
configuration setting to set a maximum allowed cost, so the only real option was to set a maximum allowed transaction
size.

Note: The BigchainDB documentation and code talks about control of an asset in terms of “owners” and “ownership.”
The language is chosen to represent the most common use cases, but in some more complex scenarios, it may not be
accurate to say that the output is owned by the controllers of those public keys—it would only be correct to say that
those public keys are associated with the ability to fulfill the conditions on the output. Also, depending on the use case,
the entity controlling an output via a private key may not be the legal owner of the asset in the corresponding legal
domain. However, since we aim to use language that is simple to understand and covers the majority of use cases, we
talk in terms of “owners” of an output that have the ability to “spend” that output.

The Block Model

A block has the following structure:

{
"id": "<hash of block>",
"block": {
"timestamp": "<block-creation timestamp>",
"transactions": ["<list of transactions>"],
"node_pubkey": "<public key of the node creating the block>",
"voters": ["<list of public keys of all nodes in the cluster>"]

},
"signature": "<signature of block>"

}

• id: The hash of the serialized inner block (i.e. the timestamp, transactions, node_pubkey, and
voters). It’s used as a unique index in the database backend (e.g. RethinkDB or MongoDB).

• block:

– timestamp: The Unix time when the block was created. It’s provided by the node that created the
block.

– transactions: A list of the transactions included in the block.

– node_pubkey: The public key of the node that created the block.

90 Chapter 11. Data Models

https://tools.ietf.org/html/draft-thomas-crypto-conditions-02#section-7.2.2
https://github.com/bigchaindb/bigchaindb/issues/356#issuecomment-288085251

BigchainDB Server Documentation, Release 1.0.1

– voters: A list of the public keys of all cluster nodes at the time the block was created. It’s the list
of nodes which can cast a vote on this block. This list can change from block to block, as nodes join
and leave the cluster.

• signature: Cryptographic signature of the block by the node that created the block (i.e. the node with public
key node_pubkey). To generate the signature, the node signs the serialized inner block (the same thing that
was hashed to determine the id) using the private key corresponding to node_pubkey.

Working with Blocks

There’s a Block class for creating and working with Block objects; look in /bigchaindb/models.py. (The link is to the
latest version on the master branch on GitHub.)

The Vote Model

A vote has the following structure:

{
"node_pubkey": "<The public key of the voting node>",
"vote": {

"voting_for_block": "<ID of the block the node is voting on>",
"previous_block": "<ID of the block previous to the block being voted on>",
"is_block_valid": "<true OR false>",
"invalid_reason": null,
"timestamp": "<Unix time when the vote was generated, provided by the voting

→˓node>"
},
"signature": "<Cryptographic signature of vote>"

}

Notes

• Votes have no ID (or "id"), as far as users are concerned. (The backend database uses one internally, but it’s
of no concern to users and it’s never reported to them via BigchainDB APIs.)

• At the time of writing, the value of "invalid_reason" was always null. In other words, it wasn’t being
used. It may be used or dropped in a future version of BigchainDB. See Issue #217 on GitHub.

• For more information about the vote "timestamp", see the page about timestamps in BigchainDB.

• For more information about how the "signature" is calculated, see the page about cryptography in
BigchainDB.

11.5. The Vote Model 91

https://github.com/bigchaindb/bigchaindb/blob/master/bigchaindb/models.py
https://github.com/bigchaindb/bigchaindb/issues/217
https://docs.bigchaindb.com/en/latest/timestamps.html

BigchainDB Server Documentation, Release 1.0.1

92 Chapter 11. Data Models

CHAPTER 12

Transaction Schema

• Transaction

• Input

• Output

• Asset

• Metadata

Transaction

A transaction represents the creation or transfer of assets in BigchainDB.

Transaction.id

type: string

A sha3 digest of the transaction. The ID is calculated by removing all derived hashes and signatures from the transac-
tion, serializing it to JSON with keys in sorted order and then hashing the resulting string with sha3.

Transaction.operation

type: string

Type of the transaction:

A CREATE transaction creates an asset in BigchainDB. This transaction has outputs but no inputs, so a dummy input
is created.

A TRANSFER transaction transfers ownership of an asset, by providing an input that meets the conditions of an earlier
transaction’s outputs.

93

BigchainDB Server Documentation, Release 1.0.1

A GENESIS transaction is a special case transaction used as the sole member of the first block in a BigchainDB ledger.

Transaction.asset

type: object

Description of the asset being transacted.

See: Asset.

Transaction.inputs

type: array (object)

Array of the inputs of a transaction.

See: Input.

Transaction.outputs

type: array (object)

Array of outputs provided by this transaction.

See: Output.

Transaction.metadata

type: object or null

User provided transaction metadata. This field may be null or may contain an id and an object with freeform
metadata.

See: Metadata.

Transaction.version

type: string

BigchainDB transaction schema version.

Input

An input spends a previous output, by providing one or more fulfillments that fulfill the conditions of the previous
output.

Input.owners_before

type: array (string) or null

List of public keys of the previous owners of the asset.

94 Chapter 12. Transaction Schema

BigchainDB Server Documentation, Release 1.0.1

Input.fulfillment

type: string or object or object

Fulfillment of an Output.condition, or, put a different way, a payload that satisfies the condition of a previous output
to prove that the creator(s) of this transaction have control over the listed asset.

Input.fulfills

type: object or null

Reference to the output that is being spent.

Output

A transaction output. Describes the quantity of an asset and the requirements that must be met to spend the output.

See also: Input.

Output.amount

type: string

Integral amount of the asset represented by this output. In the case of a non divisible asset, this will always be 1.

Output.condition

type: object

Describes the condition that needs to be met to spend the output. Has the properties:

• details: Details of the condition.

• uri: Condition encoded as an ASCII string.

Output.public_keys

type: array (string) or null

List of public keys associated with the conditions on an output.

Asset

Description of the asset being transacted. In the case of a TRANSFER transaction, this field contains only the ID of
asset. In the case of a CREATE transaction, this field contains only the user-defined payload.

Asset.id

type: string

ID of the transaction that created the asset.

12.3. Output 95

BigchainDB Server Documentation, Release 1.0.1

Asset.data

type: object or null

User provided metadata associated with the asset. May also be null.

Metadata

User provided transaction metadata. This field may be null or may contain an non empty object with freeform
metadata.

96 Chapter 12. Transaction Schema

CHAPTER 13

Vote Schema

Vote

A Vote is an endorsement of a Block (identified by a hash) by a node (identified by a public key).

The outer Vote object contains the details of the vote being made as well as the signature and identifying information
of the node passing the vote.

Vote.node_pubkey

type: string

Ed25519 public key identifying the voting node.

Vote.signature

type: string

Ed25519 signature of the Vote Details object.

Vote.vote

type: object

Vote Details to be signed.

Vote Details

Vote Details to be signed.

97

BigchainDB Server Documentation, Release 1.0.1

Vote.previous_block

type: string

ID (SHA3 hash) of the block that precedes the block being voted on. The notion of a “previous” block is subject to
vote.

Vote.voting_for_block

type: string

ID (SHA3 hash) of the block being voted on.

Vote.is_block_valid

type: boolean

This field is true if the block was deemed valid by the node.

Vote.invalid_reason

type: string or null

Reason the block is voted invalid, or null.

Note: The invalid_reason was not being used and may be dropped in a future version of BigchainDB. See Issue #217
on GitHub.

Vote.timestamp

type: string

Unix timestamp that the vote was created by the node, according to the system time of the node.

98 Chapter 13. Vote Schema

https://github.com/bigchaindb/bigchaindb/issues/217

CHAPTER 14

Release Notes

You can find a list of all BigchainDB Server releases and release notes on GitHub at:

https://github.com/bigchaindb/bigchaindb/releases

The CHANGELOG.md file contains much the same information, but it also has notes about what to expect in the next
release.

We also have a roadmap document in ROADMAP.md.

99

https://github.com/bigchaindb/bigchaindb/releases
https://github.com/bigchaindb/bigchaindb/blob/master/CHANGELOG.md
https://github.com/bigchaindb/org/blob/master/ROADMAP.md

BigchainDB Server Documentation, Release 1.0.1

100 Chapter 14. Release Notes

CHAPTER 15

Appendices

How to Install OS-Level Dependencies

BigchainDB Server has some OS-level dependencies that must be installed.

On Ubuntu 16.04, we found that the following was enough:

sudo apt-get update
sudo apt-get install g++ python3-dev libffi-dev build-essential libssl-dev

On Fedora 23–25, we found that the following was enough:

sudo dnf update
sudo dnf install gcc-c++ redhat-rpm-config python3-devel libffi-devel

(If you’re using a version of Fedora before version 22, you may have to use yum instead of dnf.)

How to Install the Latest pip and setuptools

You can check the version of pip you’re using (in your current virtualenv) by doing:

pip -V

If it says that pip isn’t installed, or it says pip is associated with a Python version less than 3.5, then you must install
a pip version associated with Python 3.5+. In the following instructions, we call it pip3 but you may be able to use
pip if that refers to the same thing. See the pip installation instructions.

On Ubuntu 16.04, we found that this works:

sudo apt-get install python3-pip

That should install a Python 3 version of pip named pip3. If that didn’t work, then another way to get pip3 is to
do sudo apt-get install python3-setuptools followed by sudo easy_install3 pip.

101

https://pip.pypa.io/en/stable/installing/

BigchainDB Server Documentation, Release 1.0.1

You can upgrade pip (pip3) and setuptools to the latest versions using:

pip3 install --upgrade pip setuptools

Run BigchainDB with Docker

NOT for Production Use

For those who like using Docker and wish to experiment with BigchainDB in non-production environments, we
currently maintain a Docker image and a Dockerfile that can be used to build an image for bigchaindb.

Pull and Run the Image from Docker Hub

Assuming you have Docker installed, you would proceed as follows.

In a terminal shell, pull the latest version of the BigchainDB Docker image using:

docker pull bigchaindb/bigchaindb

Configuration

A one-time configuration step is required to create the config file; we will use the -y option to accept all the de-
fault values. The configuration file will be stored in a file on your host machine at ~/bigchaindb_docker/.
bigchaindb:

docker run \
--interactive \
--rm \
--tty \
--volume $HOME/bigchaindb_docker:/data \
bigchaindb/bigchaindb \
-y configure \
[mongodb|rethinkdb]

Generating keypair
Configuration written to /data/.bigchaindb
Ready to go!

Let’s analyze that command:

• docker run tells Docker to run some image

• --interactive keep STDIN open even if not attached

• --rm remove the container once we are done

• --tty allocate a pseudo-TTY

• --volume "$HOME/bigchaindb_docker:/data" map the host directory $HOME/
bigchaindb_docker to the container directory /data; this allows us to have the data persisted on
the host machine, you can read more in the official Docker documentation

• bigchaindb/bigchaindb the image to use. All the options after the container name are passed on to the
entrypoint inside the container.

102 Chapter 15. Appendices

https://docs.docker.com/engine/tutorials/dockervolumes

BigchainDB Server Documentation, Release 1.0.1

• -y configure execute the configure sub-command (of the bigchaindb command) inside the con-
tainer, with the -y option to automatically use all the default config values

• mongodb or rethinkdb specifies the database backend to use with bigchaindb

To ensure that BigchainDB connects to the backend database bound to the virtual interface 172.17.0.1, you must
edit the BigchainDB configuration file (~/bigchaindb_docker/.bigchaindb) and change database.host from
localhost to 172.17.0.1.

Run the backend database

From v0.9 onwards, you can run either RethinkDB or MongoDB.

We use the virtual interface created by the Docker daemon to allow communication between the BigchainDB and
database containers. It has an IP address of 172.17.0.1 by default.

You can also use docker host networking or bind to your primary (eth) interface, if needed.

For RethinkDB

docker run \
--detach \
--name=rethinkdb \
--publish=172.17.0.1:28015:28015 \
--publish=172.17.0.1:58080:8080 \
--restart=always \
--volume $HOME/bigchaindb_docker:/data \
rethinkdb:2.3

You can also access the RethinkDB dashboard at http://172.17.0.1:58080/

For MongoDB

Note: MongoDB runs as user mongodb which had the UID 999 and GID 999 inside the container. For the volume
to be mounted properly, as user mongodb in your host, you should have a mongodb user with UID and GID 999. If
you have another user on the host with UID 999, the mapped files will be owned by this user in the host. If there is
no owner with UID 999, you can create the corresponding user and group.

useradd -r --uid 999 mongodb OR groupadd -r --gid 999 mongodb && useradd -r
--uid 999 -g mongodb mongodb should work.

docker run \
--detach \
--name=mongodb \
--publish=172.17.0.1:27017:27017 \
--restart=always \
--volume=/tmp/mongodb_docker/db:/data/db \
--volume=/tmp/mongodb_docker/configdb:/data/configdb \
mongo:3.4.1 --replSet=bigchain-rs

Run BigchainDB

15.3. Run BigchainDB with Docker 103

BigchainDB Server Documentation, Release 1.0.1

docker run \
--detach \
--name=bigchaindb \
--publish=59984:9984 \
--restart=always \
--volume=$HOME/bigchaindb_docker:/data \
bigchaindb/bigchaindb \
start

The command is slightly different from the previous one, the differences are:

• --detach run the container in the background

• --name bigchaindb give a nice name to the container so it’s easier to refer to it later

• --publish "59984:9984" map the host port 59984 to the container port 9984 (the BigchainDB API
server)

• start start the BigchainDB service

Another way to publish the ports exposed by the container is to use the -P (or --publish-all) option. This will
publish all exposed ports to random ports. You can always run docker ps to check the random mapping.

If that doesn’t work, then replace localhost with the IP or hostname of the machine running the Docker engine. If
you are running docker-machine (e.g. on Mac OS X) this will be the IP of the Docker machine (docker-machine
ip machine_name).

Building Your Own Image

Assuming you have Docker installed, you would proceed as follows.

In a terminal shell:

git clone git@github.com:bigchaindb/bigchaindb.git

Build the Docker image:

docker build --tag local-bigchaindb .

Now you can use your own image to run BigchainDB containers.

Run BigchainDB with Docker On Mac

NOT for Production Use

Those developing on Mac can follow this document to run BigchainDB in docker containers for a quick dev setup.
Running BigchainDB on Mac (Docker or otherwise) is not officially supported.

Support is very much limited as there are certain things that work differently in Docker for Mac than Docker for other
platforms. Also, we do not use mac for our development and testing. :)

This page may not be up to date with various settings and docker updates at all the times.

These steps work as of this writing (2017.Mar.09) and might break in the future with updates to Docker for mac.
Community contribution to make BigchainDB run on Docker for Mac will always be welcome.

104 Chapter 15. Appendices

BigchainDB Server Documentation, Release 1.0.1

Prerequisite

Install Docker for Mac.

(Optional) For a clean start

1. Stop all BigchainDB and RethinkDB/MongoDB containers.

2. Delete all BigchainDB docker images.

3. Delete the ~/bigchaindb_docker folder.

Pull the images

Pull the bigchaindb and other required docker images from docker hub.

docker pull bigchaindb/bigchaindb:master
docker pull [rethinkdb:2.3|mongo:3.4.1]

Create the BigchainDB configuration file on Mac

docker run \
--rm \
--volume $HOME/bigchaindb_docker:/data \
bigchaindb/bigchaindb:master \
-y configure \
[mongodb|rethinkdb]

To ensure that BigchainDB connects to the backend database bound to the virtual interface 172.17.0.1, you must
edit the BigchainDB configuration file (~/bigchaindb_docker/.bigchaindb) and change database.host from
localhost to 172.17.0.1.

Run the backend database on Mac

From v0.9 onwards, you can run RethinkDB or MongoDB.

We use the virtual interface created by the Docker daemon to allow communication between the BigchainDB and
database containers. It has an IP address of 172.17.0.1 by default.

You can also use docker host networking or bind to your primary (eth) interface, if needed.

For RethinkDB backend

docker run \
--name=rethinkdb \
--publish=28015:28015 \
--publish=8080:8080 \
--restart=always \
--volume $HOME/bigchaindb_docker:/data \
rethinkdb:2.3

15.4. Run BigchainDB with Docker On Mac 105

BigchainDB Server Documentation, Release 1.0.1

For MongoDB backend

docker run \
--name=mongodb \
--publish=27017:27017 \
--restart=always \
--volume=$HOME/bigchaindb_docker/db:/data/db \
--volume=$HOME/bigchaindb_docker/configdb:/data/configdb \
mongo:3.4.1 --replSet=bigchain-rs

Run BigchainDB on Mac

docker run \
--name=bigchaindb \
--publish=9984:9984 \
--restart=always \
--volume=$HOME/bigchaindb_docker:/data \
bigchaindb/bigchaindb \
start

JSON Serialization

We needed to clearly define how to serialize a JSON object to calculate the hash.

The serialization should produce the same byte output independently of the architecture running the software. If there
are differences in the serialization, hash validations will fail although the transaction is correct.

For example, consider the following two methods of serializing {'a': 1}:

Use a serializer provided by RethinkDB
a = r.expr({'a': 1}).to_json().run(b.connection)
u'{"a":1}'

Use the serializer in Python's json module
b = json.dumps({'a': 1})
'{"a": 1}'

a == b
False

The results are not the same. We want a serialization and deserialization so that the following is always true:

deserialize(serialize(data)) == data
True

Since BigchainDB performs a lot of serialization we decided to use python-rapidjson which is a python wrapper for
rapidjson a fast and fully RFC complient JSON parser.

import rapidjson

rapidjson.dumps(data, skipkeys=False,
ensure_ascii=False,
sort_keys=True)

106 Chapter 15. Appendices

https://github.com/python-rapidjson/python-rapidjson
https://github.com/miloyip/rapidjson

BigchainDB Server Documentation, Release 1.0.1

• skipkeys: With skipkeys False if the provided keys are not a string the serialization will fail. This way we
enforce all keys to be strings

• ensure_ascii: The RFC recommends utf-8 for maximum interoperability. By setting ensure_ascii
to False we allow unicode characters and python-rapidjson forces the encoding to utf-8.

• sort_keys: Sorted output by keys.

Every time we need to perform some operation on the data like calculating the hash or signing/verifying the transaction,
we need to use the previous criteria to serialize the data and then use the byte representation of the serialized data (if
we treat the data as bytes we eliminate possible encoding errors e.g. unicode characters). For example:

calculate the hash of a transaction
the transaction is a dictionary
tx_serialized = bytes(serialize(tx))
tx_hash = hashlib.sha3_256(tx_serialized).hexdigest()

signing a transaction
tx_serialized = bytes(serialize(tx))
signature = sk.sign(tx_serialized)

verify signature
tx_serialized = bytes(serialize(tx))
pk.verify(signature, tx_serialized)

Cryptography

The section documents the cryptographic algorithms and Python implementations that we use.

Before hashing or computing the signature of a JSON document, we serialize it as described in the section on JSON
serialization.

Hashes

BigchainDB computes transaction and block hashes using an implementation of the SHA3-256 algorithm provided by
the pysha3 package, which is a wrapper around the optimized reference implementation from http://keccak.noekeon.
org.

Important: Since selecting the Keccak hashing algorithm for SHA-3 in 2012, NIST released a new version of the
hash using the same algorithm but slightly different parameters. As of version 0.9, BigchainDB is using the latest
version, supported by pysha3 1.0b1. See below for an example output of the hash function.

Here’s the relevant code from ‘bigchaindb/bigchaindb/common/crypto.py:

import sha3

def hash_data(data):
"""Hash the provided data using SHA3-256"""
return sha3.sha3_256(data.encode()).hexdigest()

The incoming data is understood to be a Python 3 string, which may contain Unicode characters such as 'ü' or
''. The Python 3 encode() method converts data to a bytes object. sha3.sha3_256(data.encode()) is
a _sha3.SHA3 object; the hexdigest() method converts it to a hexadecimal string. For example:

15.6. Cryptography 107

https://pypi.python.org/pypi/pysha3
https://bitbucket.org/tiran/pykeccak
http://keccak.noekeon.org
http://keccak.noekeon.org
https://en.wikipedia.org/wiki/SHA-3#cite_note-14

BigchainDB Server Documentation, Release 1.0.1

>>> import sha3
>>> data = ''
>>> sha3.sha3_256(data.encode()).hexdigest()
'2b38731ba4ef72d4034bef49e87c381d1fbe75435163b391dd33249331f91fe7'
>>> data = 'hello world'
>>> sha3.sha3_256(data.encode()).hexdigest()
'644bcc7e564373040999aac89e7622f3ca71fba1d972fd94a31c3bfbf24e3938'

Note: Hashlocks (which are one kind of crypto-condition) may use a different hash function.

Signature Algorithm and Keys

BigchainDB uses the Ed25519 public-key signature system for generating its public/private key pairs. Ed25519 is
an instance of the Edwards-curve Digital Signature Algorithm (EdDSA). As of December 2016, EdDSA was an
“Internet-Draft” with the IETF but was already widely used.

BigchainDB uses the the cryptoconditions package to do signature and keypair-related calculations. That package, in
turn, uses the PyNaCl package, a Python binding to the Networking and Cryptography (NaCl) library.

All keys are represented with a Base58 encoding. The cryptoconditions package uses the base58 package to calculate
a Base58 encoding. (There’s no standard for Base58 encoding.) Here’s an example public/private key pair:

"keypair": {
"public": "9WYFf8T65bv4S8jKU8wongKPD4AmMZAwvk1absFDbYLM",
"private": "3x7MQpPq8AEUGEuzAxSVHjU1FhLWVQJKFNNkvHhJPGCX"

}

The Bigchain class

The Bigchain class is the top-level Python API for BigchainDB. If you want to create and initialize a BigchainDB
database, you create a Bigchain instance (object). Then you can use its various methods to create transactions, write
transactions (to the object/database), read transactions, etc.

class bigchaindb.Bigchain(public_key=None, private_key=None, keyring=[], connection=None, back-
log_reassign_delay=None)

Bigchain API

Create, read, sign, write transactions to the database

__init__(public_key=None, private_key=None, keyring=[], connection=None, back-
log_reassign_delay=None)

Initialize the Bigchain instance

A Bigchain instance has several configuration parameters (e.g. host). If a parameter value is passed as an
argument to the Bigchain __init__ method, then that is the value it will have. Otherwise, the parameter
value will come from an environment variable. If that environment variable isn’t set, then the value will
come from the local configuration file. And if that variable isn’t in the local configuration file, then the
parameter will have its default value (defined in bigchaindb.__init__).

Parameters

• public_key (str) – the base58 encoded public key for the ED25519 curve.

• private_key (str) – the base58 encoded private key for the ED25519 curve.

• keyring (list[str]) – list of base58 encoded public keys of the federation nodes.

108 Chapter 15. Appendices

https://ed25519.cr.yp.to/
https://en.wikipedia.org/wiki/EdDSA
https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-08
https://ianix.com/pub/ed25519-deployment.html
https://github.com/bigchaindb/cryptoconditions
https://pypi.python.org/pypi/PyNaCl
https://en.wikipedia.org/wiki/Base58
https://pypi.python.org/pypi/base58
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

BigchainDB Server Documentation, Release 1.0.1

• connection (Connection) – A connection to the database.

BLOCK_INVALID = ‘invalid’
return if a block has been voted invalid

BLOCK_VALID = ‘valid’
return if a block is valid, or tx is in valid block

TX_VALID = ‘valid’
return if a block is valid, or tx is in valid block

BLOCK_UNDECIDED = ‘undecided’
return if block is undecided, or tx is in undecided block

TX_UNDECIDED = ‘undecided’
return if block is undecided, or tx is in undecided block

TX_IN_BACKLOG = ‘backlog’
return if transaction is in backlog

federation
Set of federation member public keys

write_transaction(signed_transaction)
Write the transaction to bigchain.

When first writing a transaction to the bigchain the transaction will be kept in a backlog until it has been
validated by the nodes of the federation.

Parameters signed_transaction (Transaction) – transaction with the signature in-
cluded.

Returns database response

Return type dict

reassign_transaction(transaction)
Assign a transaction to a new node

Parameters transaction (dict) – assigned transaction

Returns database response or None if no reassignment is possible

Return type dict

delete_transaction(*transaction_id)
Delete a transaction from the backlog.

Parameters *transaction_id (str) – the transaction(s) to delete

Returns The database response.

get_stale_transactions()
Get a cursor of stale transactions.

Transactions are considered stale if they have been assigned a node, but are still in the backlog after some
amount of time specified in the configuration

validate_transaction(transaction)
Validate a transaction.

Parameters transaction (Transaction) – transaction to validate.

Returns The transaction if the transaction is valid else it raises an exception describing the rea-
son why the transaction is invalid.

15.7. The Bigchain class 109

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

BigchainDB Server Documentation, Release 1.0.1

is_new_transaction(txid, exclude_block_id=None)
Return True if the transaction does not exist in any VALID or UNDECIDED block. Return False otherwise.

Parameters

• txid (str) – Transaction ID

• exclude_block_id (str) – Exclude block from search

get_block(block_id, include_status=False)
Get the block with the specified block_id (and optionally its status)

Returns the block corresponding to block_id or None if no match is found.

Parameters

• block_id (str) – transaction id of the transaction to get

• include_status (bool) – also return the status of the block the return value is then
a tuple: (block, status)

get_transaction(txid, include_status=False)
Get the transaction with the specified txid (and optionally its status)

This query begins by looking in the bigchain table for all blocks containing a transaction with the specified
txid. If one of those blocks is valid, it returns the matching transaction from that block. Else if some
of those blocks are undecided, it returns a matching transaction from one of them. If the transaction was
found in invalid blocks only, or in no blocks, then this query looks for a matching transaction in the backlog
table, and if it finds one there, it returns that.

Parameters

• txid (str) – transaction id of the transaction to get

• include_status (bool) – also return the status of the transaction the return value is
then a tuple: (tx, status)

Returns A Transaction instance if the transaction was found in a valid block, an undecided
block, or the backlog table, otherwise None. If include_status is True, also returns
the transaction’s status if the transaction was found.

get_status(txid)
Retrieve the status of a transaction with txid from bigchain.

Parameters txid (str) – transaction id of the transaction to query

Returns transaction status (‘valid’, ‘undecided’, or ‘backlog’). If no transaction with that txid
was found it returns None

Return type (string)

get_blocks_status_containing_tx(txid)
Retrieve block ids and statuses related to a transaction

Transactions may occur in multiple blocks, but no more than one valid block.

Parameters txid (str) – transaction id of the transaction to query

Returns A dict of blocks containing the transaction, e.g. {block_id_1: ‘valid’, block_id_2:
‘invalid’ ...}, or None

get_asset_by_id(asset_id)
Returns the asset associated with an asset_id.

Parameters asset_id (str) – The asset id.

110 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BigchainDB Server Documentation, Release 1.0.1

Returns dict if the asset exists else None.

get_spent(txid, output)
Check if a txid was already used as an input.

A transaction can be used as an input for another transaction. Bigchain needs to make sure that a given
(txid, output) is only used once.

This method will check if the (txid, output) has already been spent in a transaction that is in either the
VALID, UNDECIDED or BACKLOG state.

Parameters

• txid (str) – The id of the transaction

• output (num) – the index of the output in the respective transaction

Returns The transaction (Transaction) that used the (txid, output) as an input else None

Raises

• CriticalDoubleSpend – If the given (txid, output) was spent in

• more than one valid transaction.

get_owned_ids(owner)
Retrieve a list of txid s that can be used as inputs.

Parameters owner (str) – base58 encoded public key.

Returns list of txid s and output s pointing to another transaction’s condition

Return type list of TransactionLink

get_outputs_filtered(owner, spent=None)
Get a list of output links filtered on some criteria

Parameters

• owner (str) – base58 encoded public_key.

• spent (bool) – If True return only the spent outputs. If False return only unspent
outputs. If spent is not specified (None) return all outputs.

Returns list of txid s and output s pointing to another transaction’s condition

Return type list of TransactionLink

get_transactions_filtered(asset_id, operation=None)
Get a list of transactions filtered on some criteria

create_block(validated_transactions)
Creates a block given a list of validated_transactions.

Note that this method does not validate the transactions. Transactions should be validated before calling
create_block.

Parameters validated_transactions (list(Transaction)) – list of validated
transactions.

Returns created block.

Return type Block

validate_block(block)
Validate a block.

Parameters block (Block) – block to validate.

15.7. The Bigchain class 111

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

BigchainDB Server Documentation, Release 1.0.1

Returns The block if the block is valid else it raises and exception describing the reason why
the block is invalid.

has_previous_vote(block_id)
Check for previous votes from this node

Parameters block_id (str) – the id of the block to check

Returns True if this block already has a valid vote from this node, False otherwise.

Return type bool

write_block(block)
Write a block to bigchain.

Parameters block (Block) – block to write to bigchain.

prepare_genesis_block()
Prepare a genesis block.

create_genesis_block()
Create the genesis block

Block created when bigchain is first initialized. This method is not atomic, there might be concurrency
problems if multiple instances try to write the genesis block when the BigchainDB Federation is started,
but it’s a highly unlikely scenario.

vote(block_id, previous_block_id, decision, invalid_reason=None)
Create a signed vote for a block given the previous_block_id and the decision (valid/invalid).

Parameters

• block_id (str) – The id of the block to vote on.

• previous_block_id (str) – The id of the previous block.

• decision (bool) – Whether the block is valid or invalid.

• invalid_reason (Optional[str]) – Reason the block is invalid

write_vote(vote)
Write the vote to the database.

get_last_voted_block()
Returns the last block that this node voted on.

block_election_status(block)
Tally the votes on a block, and return the status: valid, invalid, or undecided.

get_assets(asset_ids)
Return a list of assets that match the asset_ids

Parameters asset_ids (list of str) – A list of asset_ids to retrieve from the database.

Returns The list of assets returned from the database.

Return type list

write_assets(assets)
Writes a list of assets into the database.

Parameters assets (list of dict) – A list of assets to write to the database.

text_search(search, *, limit=0)
Return an iterator of assets that match the text search

Parameters

112 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

BigchainDB Server Documentation, Release 1.0.1

• search (str) – Text search string to query the text index

• limit (int, optional) – Limit the number of returned documents.

Returns An iterator of assets that match the text search.

Return type iter

Pipelines

Block Creation

This module takes care of all the logic related to block creation.

The logic is encapsulated in the BlockPipeline class, while the sequence of actions to do on transactions is
specified in the create_pipeline function.

class bigchaindb.pipelines.block.BlockPipeline
This class encapsulates the logic to create blocks.

Note: Methods of this class will be executed in different processes.

filter_tx(tx)
Filter a transaction.

Parameters tx (dict) – the transaction to process.

Returns The transaction if assigned to the current node, None otherwise.

Return type dict

validate_tx(tx)
Validate a transaction.

Also checks if the transaction already exists in the blockchain. If it does, or it’s invalid, it’s deleted from
the backlog immediately.

Parameters tx (dict) – the transaction to validate.

Returns The transaction if valid, None otherwise.

Return type Transaction

create(tx, timeout=False)
Create a block.

This method accumulates transactions to put in a block and outputs a block when one of the following
conditions is true: - the size limit of the block has been reached, or - a timeout happened.

Parameters

• tx (Transaction) – the transaction to validate, might be None if a timeout happens.

• timeout (bool) – True if a timeout happened (Default: False).

Returns The block, if a block is ready, or None.

Return type Block

write(block)
Write the block to the Database.

15.8. Pipelines 113

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

BigchainDB Server Documentation, Release 1.0.1

Parameters block (Block) – the block of transactions to write to the database.

Returns The Block.

Return type Block

delete_tx(block)
Delete transactions.

Parameters block (Block) – the block containg the transactions to delete.

Returns The block.

Return type Block

bigchaindb.pipelines.block.tx_collector()
A helper to deduplicate transactions

bigchaindb.pipelines.block.create_pipeline()
Create and return the pipeline of operations to be distributed on different processes.

bigchaindb.pipelines.block.start()
Create, start, and return the block pipeline.

Block Voting

This module takes care of all the logic related to block voting.

The logic is encapsulated in the Vote class, while the sequence of actions to do on transactions is specified in the
create_pipeline function.

class bigchaindb.pipelines.vote.Vote
This class encapsulates the logic to vote on blocks.

Note: Methods of this class will be executed in different processes.

ungroup(block_id, transactions)
Given a block, ungroup the transactions in it.

Parameters

• block_id (str) – the id of the block in progress.

• transactions (list(dict)) – transactions of the block in progress.

Returns None if the block has been already voted, an iterator that yields a transaction, block id,
and the total number of transactions contained in the block otherwise.

validate_tx(tx_dict, block_id, num_tx)

Validate a transaction. Transaction must also not be in any VALID block.

Parameters

• tx_dict (dict) – the transaction to validate

• block_id (str) – the id of block containing the transaction

• num_tx (int) – the total number of transactions to process

Returns Three values are returned, the validity of the transaction, block_id, num_tx.

114 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

BigchainDB Server Documentation, Release 1.0.1

vote(tx_validity, block_id, num_tx)
Collect the validity of transactions and cast a vote when ready.

Parameters

• tx_validity (bool) – the validity of the transaction

• block_id (str) – the id of block containing the transaction

• num_tx (int) – the total number of transactions to process

Returns None, or a vote if a decision has been reached.

write_vote(vote, num_tx)
Write vote to the database.

Parameters vote – the vote to write.

bigchaindb.pipelines.vote.create_pipeline()
Create and return the pipeline of operations to be distributed on different processes.

bigchaindb.pipelines.vote.get_changefeed()
Create and return ordered changefeed of blocks starting from last voted block

bigchaindb.pipelines.vote.start()
Create, start, and return the block pipeline.

Block Status

This module takes care of all the logic related to block status.

Specifically, what happens when a block becomes invalid. The logic is encapsulated in the Election class, while
the sequence of actions is specified in create_pipeline.

class bigchaindb.pipelines.election.Election(events_queue=None)
Election class.

check_for_quorum(next_vote)
Checks if block has enough invalid votes to make a decision

Parameters next_vote – The next vote.

requeue_transactions(invalid_block)
Liquidates transactions from invalid blocks so they can be processed again

Stale Transaction Monitoring

This module monitors for stale transactions.

It reassigns transactions which have been assigned a node but remain in the backlog past a certain amount of time.

class bigchaindb.pipelines.stale.StaleTransactionMonitor(timeout=5, back-
log_reassign_delay=None)

This class encapsulates the logic for re-assigning stale transactions.

Note: Methods of this class will be executed in different processes.

check_transactions()
Poll backlog for stale transactions

15.8. Pipelines 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

BigchainDB Server Documentation, Release 1.0.1

Returns txs to be re assigned

Return type txs (list)

reassign_transactions(tx)
Put tx back in backlog with new assignee

Returns transaction

bigchaindb.pipelines.stale.create_pipeline(timeout=5, backlog_reassign_delay=5)
Create and return the pipeline of operations to be distributed on different processes.

bigchaindb.pipelines.stale.start(timeout=5, backlog_reassign_delay=None)
Create, start, and return the block pipeline.

Database Backend Interfaces

Generic backend database interfaces expected by BigchainDB.

The interfaces in this module allow BigchainDB to be agnostic about its database backend. One can configure
BigchainDB to use different databases as its data store by setting the database.backend property in the con-
figuration or the BIGCHAINDB_DATABASE_BACKEND environment variable.

Generic Interfaces

bigchaindb.backend.connection

bigchaindb.backend.connection.connect(backend=None, host=None, port=None, name=None,
max_tries=None, connection_timeout=None,
replicaset=None, ssl=None, login=None, pass-
word=None, ca_cert=None, certfile=None, key-
file=None, keyfile_passphrase=None, crlfile=None)

Create a new connection to the database backend.

All arguments default to the current configuration’s values if not given.

Parameters

• backend (str) – the name of the backend to use.

• host (str) – the host to connect to.

• port (int) – the port to connect to.

• name (str) – the name of the database to use.

• replicaset (str) – the name of the replica set (only relevant for MongoDB connec-
tions).

Returns An instance of Connection based on the given (or defaulted) backend.

Raises

• ConnectionError – If the connection to the database fails.

• ConfigurationError – If the given (or defaulted) backend is not supported or could
not be loaded.

• AuthenticationError – If there is a OperationFailure due to Authentication failure
after connecting to the database.

116 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ConnectionError

BigchainDB Server Documentation, Release 1.0.1

class bigchaindb.backend.connection.Connection(host=None, port=None, db-
name=None, connection_timeout=None,
max_tries=None, **kwargs)

Connection class interface.

All backend implementations should provide a connection class that inherits from and implements this class.

__init__(host=None, port=None, dbname=None, connection_timeout=None, max_tries=None,
**kwargs)

Create a new Connection instance.

Parameters

• host (str) – the host to connect to.

• port (int) – the port to connect to.

• dbname (str) – the name of the database to use.

• connection_timeout (int, optional) – the milliseconds to wait until timing
out the database connection attempt. Defaults to 5000ms.

• max_tries (int, optional) – how many tries before giving up, if 0 then try forever.
Defaults to 3.

• **kwargs – arbitrary keyword arguments provided by the configuration’s database
settings

run(query)
Run a query.

Parameters query – the query to run

Raises

• DuplicateKeyError – If the query fails because of a duplicate key constraint.

• OperationFailure – If the query fails for any other reason.

• ConnectionError – If the connection to the database fails.

connect()
Try to connect to the database.

Raises ConnectionError – If the connection to the database fails.

bigchaindb.backend.changefeed

Changefeed interfaces for backends.

class bigchaindb.backend.changefeed.ChangeFeed(table, operation, *, prefeed=None, connec-
tion=None)

Create a new changefeed.

It extends multipipes.Node to make it pluggable in other Pipelines instances, and makes usage of self.
outqueue to output the data.

A changefeed is a real time feed on inserts, updates, and deletes, and is volatile. This class is a helper to create
changefeeds. Moreover, it provides a way to specify a prefeed of iterable data to output before the actual
changefeed.

run_forever()
Main loop of the multipipes.Node

15.9. Database Backend Interfaces 117

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#ConnectionError

BigchainDB Server Documentation, Release 1.0.1

This method is responsible for first feeding the prefeed to the outqueue and after that starting the change-
feed and recovering from any errors that may occur in the backend.

run_changefeed()
Backend specific method to run the changefeed.

The changefeed is usually a backend cursor that is not closed when all the results are exausted. Instead it
remains open waiting for new results.

This method should also filter each result based on the operation and put all matching results on the
outqueue of multipipes.Node.

bigchaindb.backend.changefeed.get_changefeed(connection, table, operation, *,
prefeed=None)

Return a ChangeFeed.

Parameters

• connection (Connection) – A connection to the database.

• table (str) – name of the table to listen to for changes.

• operation (int) – can be ChangeFeed.INSERT, ChangeFeed.DELETE, or Change-
Feed.UPDATE. Combining multiple operation is possible with the bitwise | operator (e.g.
ChangeFeed.INSERT | ChangeFeed.UPDATE)

• prefeed (iterable) – whatever set of data you want to be published first.

bigchaindb.backend.query

Query interfaces for backends.

bigchaindb.backend.query.write_transaction(connection, signed_transaction)
Write a transaction to the backlog table.

Parameters signed_transaction (dict) – a signed transaction.

Returns The result of the operation.

bigchaindb.backend.query.update_transaction(connection, transaction_id, doc)
Update a transaction in the backlog table.

Parameters

• transaction_id (str) – the id of the transaction.

• doc (dict) – the values to update.

Returns The result of the operation.

bigchaindb.backend.query.delete_transaction(connection, *transaction_id)
Delete a transaction from the backlog.

Parameters *transaction_id (str) – the transaction(s) to delete.

Returns The database response.

bigchaindb.backend.query.get_stale_transactions(connection, reassign_delay)
Get a cursor of stale transactions.

Transactions are considered stale if they have been assigned a node, but are still in the backlog after some
amount of time specified in the configuration.

Parameters reassign_delay (int) – threshold (in seconds) to mark a transaction stale.

118 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

BigchainDB Server Documentation, Release 1.0.1

Returns A cursor of transactions.

bigchaindb.backend.query.get_transaction_from_block(connection, transaction_id,
block_id)

Get a transaction from a specific block.

Parameters

• transaction_id (str) – the id of the transaction.

• block_id (str) – the id of the block.

Returns The matching transaction.

bigchaindb.backend.query.get_transaction_from_backlog(connection, transaction_id)
Get a transaction from backlog.

Parameters transaction_id (str) – the id of the transaction.

Returns The matching transaction.

bigchaindb.backend.query.get_blocks_status_from_transaction(connection, transac-
tion_id)

Retrieve block election information given a secondary index and value.

Parameters

• value – a value to search (e.g. transaction id string, payload hash string)

• index (str) – name of a secondary index, e.g. ‘transaction_id’

Returns A list of blocks with with only election information

Return type list of dict

bigchaindb.backend.query.get_asset_by_id(conneciton, asset_id)
Returns the asset associated with an asset_id.

Parameters asset_id (str) – The asset id.

Returns Returns a rethinkdb cursor.

bigchaindb.backend.query.get_spent(connection, transaction_id, condition_id)
Check if a txid was already used as an input.

A transaction can be used as an input for another transaction. Bigchain needs to make sure that a given txid is
only used once.

Parameters

• transaction_id (str) – The id of the transaction.

• condition_id (int) – The index of the condition in the respective transaction.

Returns The transaction that used the txid as an input else None

bigchaindb.backend.query.get_spending_transactions(connection, inputs)
Return transactions which spend given inputs

Parameters inputs (list) – list of {txid, output}

Returns Iterator of (block_ids, transaction) for transactions that spend given inputs.

bigchaindb.backend.query.get_owned_ids(connection, owner)
Retrieve a list of txids that can we used has inputs.

Parameters owner (str) – base58 encoded public key.

Returns Iterator of (block_id, transaction) for transactions that list given owner in conditions.

15.9. Database Backend Interfaces 119

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

BigchainDB Server Documentation, Release 1.0.1

bigchaindb.backend.query.get_votes_by_block_id(connection, block_id)
Get all the votes casted for a specific block.

Parameters block_id (str) – the block id to use.

Returns A cursor for the matching votes.

bigchaindb.backend.query.get_votes_by_block_id_and_voter(connection, block_id,
node_pubkey)

Get all the votes casted for a specific block by a specific voter.

Parameters

• block_id (str) – the block id to use.

• node_pubkey (str) – base58 encoded public key

Returns A cursor for the matching votes.

bigchaindb.backend.query.get_votes_for_blocks_by_voter(connection, block_ids, pub-
key)

Return votes for many block_ids

Parameters

• block_ids (set) – block_ids

• pubkey (str) – public key of voting node

Returns A cursor of votes matching given block_ids and public key

bigchaindb.backend.query.write_block(connection, block)
Write a block to the bigchain table.

Parameters block (dict) – the block to write.

Returns The database response.

bigchaindb.backend.query.get_block(connection, block_id)
Get a block from the bigchain table.

Parameters block_id (str) – block id of the block to get

Returns the block or None

Return type block (dict)

bigchaindb.backend.query.write_assets(connection, assets)
Write a list of assets to the assets table.

Parameters assets (list) – a list of assets to write.

Returns The database response.

bigchaindb.backend.query.get_assets(connection, asset_ids)
Get a list of assets from the assets table.

Parameters

• asset_ids (list) – a list of ids for the assets to be retrieved from

• database. (the) –

Returns the list of returned assets.

Return type assets (list)

bigchaindb.backend.query.count_blocks(connection)
Count the number of blocks in the bigchain table.

120 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

BigchainDB Server Documentation, Release 1.0.1

Returns The number of blocks.

bigchaindb.backend.query.count_backlog(connection)
Count the number of transactions in the backlog table.

Returns The number of transactions in the backlog.

bigchaindb.backend.query.write_vote(connection, vote)
Write a vote to the votes table.

Parameters vote (dict) – the vote to write.

Returns The database response.

bigchaindb.backend.query.get_genesis_block(connection)
Get the genesis block.

Returns The genesis block

bigchaindb.backend.query.get_last_voted_block_id(connection, node_pubkey)
Get the last voted block for a specific node.

Parameters node_pubkey (str) – base58 encoded public key.

Returns The id of the last block the node has voted on. If the node didn’t cast any vote then the
genesis block id is returned.

bigchaindb.backend.query.get_txids_filtered(connection, asset_id, operation=None)
Return all transactions for a particular asset id and optional operation.

Parameters

• asset_id (str) – ID of transaction that defined the asset

• operation (str) (optional) – Operation to filter on

bigchaindb.backend.query.get_new_blocks_feed(connection, start_block_id)
Return a generator that yields change events of the blocks feed

Parameters start_block_id (str) – ID of block to resume from

Returns Generator of change events

bigchaindb.backend.query.text_search(conn, search, *, language=’english’,
case_sensitive=False, diacritic_sensitive=False,
text_score=False, limit=0)

Return all the assets that match the text search.

The results are sorted by text score. For more information about the behavior of text search on MongoDB see
https://docs.mongodb.com/manual/reference/operator/query/text/#behavior

Parameters

• search (str) – Text search string to query the text index

• language (str, optional) – The language for the search and the rules for stemmer
and tokenizer. If the language is None text search uses simple tokenization and no stem-
ming.

• case_sensitive (bool, optional) – Enable or disable case sensitive search.

• diacritic_sensitive (bool, optional) – Enable or disable case sensitive dia-
critic search.

• text_score (bool, optional) – If True returns the text score with each document.

• limit (int, optional) – Limit the number of returned documents.

15.9. Database Backend Interfaces 121

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.mongodb.com/manual/reference/operator/query/text/#behavior
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

BigchainDB Server Documentation, Release 1.0.1

Returns a list of assets

Return type list of dict

Raises OperationError – If the backend does not support text search

bigchaindb.backend.schema

Database creation and schema-providing interfaces for backends.

bigchaindb.backend.schema.TABLES
tuple – The three standard tables BigchainDB relies on:

•backlog for incoming transactions awaiting to be put into a block.

•bigchain for blocks.

•votes to store votes for each block by each federation node.

bigchaindb.backend.schema.create_database(connection, dbname)
Create database to be used by BigchainDB.

Parameters dbname (str) – the name of the database to create.

Raises DatabaseAlreadyExists – If the given dbname already exists as a database.

bigchaindb.backend.schema.create_tables(connection, dbname)
Create the tables to be used by BigchainDB.

Parameters dbname (str) – the name of the database to create tables for.

bigchaindb.backend.schema.create_indexes(connection, dbname)
Create the indexes to be used by BigchainDB.

Parameters dbname (str) – the name of the database to create indexes for.

bigchaindb.backend.schema.drop_database(connection, dbname)
Drop the database used by BigchainDB.

Parameters dbname (str) – the name of the database to drop.

Raises DatabaseDoesNotExist – If the given dbname does not exist as a database.

bigchaindb.backend.schema.init_database(connection=None, dbname=None)
Initialize the configured backend for use with BigchainDB.

Creates a database with dbname with any required tables and supporting indexes.

Parameters

• connection (Connection) – an existing connection to use to initialize the database.
Creates one if not given.

• dbname (str) – the name of the database to create. Defaults to the database name given
in the BigchainDB configuration.

Raises DatabaseAlreadyExists – If the given dbname already exists as a database.

bigchaindb.backend.admin

Database configuration functions.

122 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BigchainDB Server Documentation, Release 1.0.1

bigchaindb.backend.utils

exception bigchaindb.backend.utils.ModuleDispatchRegistrationError
Raised when there is a problem registering dispatched functions for a module

RethinkDB Backend

RethinkDB backend implementation.

Contains a RethinkDB-specific implementation of the changefeed, query , and schema interfaces.

You can specify BigchainDB to use RethinkDB as its database backend by either setting database.backend to
'rethinkdb' in your configuration file, or setting the BIGCHAINDB_DATABASE_BACKEND environment vari-
able to 'rethinkdb'.

If configured to use RethinkDB, BigchainDB will automatically return instances of RethinkDBConnection for
connect() and dispatch calls of the generic backend interfaces to the implementations in this module.

bigchaindb.backend.rethinkdb.connection

class bigchaindb.backend.rethinkdb.connection.RethinkDBConnection(host=None,
port=None,
dbname=None,
connec-
tion_timeout=None,
max_tries=None,
**kwargs)

This class is a proxy to run queries against the database, it is:

•lazy, since it creates a connection only when needed

•resilient, because before raising exceptions it tries more times to run the query or open a connection.

run(query)
Run a RethinkDB query.

Parameters query – the RethinkDB query.

Raises rethinkdb.ReqlDriverError – After max_tries.

bigchaindb.backend.rethinkdb.schema

bigchaindb.backend.rethinkdb.query

bigchaindb.backend.rethinkdb.query.unwind_block_transactions(block)
Yield a block for each transaction in given block

bigchaindb.backend.rethinkdb.changefeed

class bigchaindb.backend.rethinkdb.changefeed.RethinkDBChangeFeed(table, op-
eration, *,
prefeed=None,
connec-
tion=None)

This class wraps a RethinkDB changefeed as a multipipes Node.

15.9. Database Backend Interfaces 123

BigchainDB Server Documentation, Release 1.0.1

bigchaindb.backend.rethinkdb.changefeed.run_changefeed(connection, table)
Encapsulate operational logic of tailing changefeed from RethinkDB

bigchaindb.backend.rethinkdb.changefeed.get_changefeed(connection, table, operation,
*, prefeed=None)

Return a RethinkDB changefeed.

Returns An instance of RethinkDBChangeFeed.

bigchaindb.backend.rethinkdb.admin

Database configuration functions.

bigchaindb.backend.rethinkdb.admin.get_config(connection, *, table)
Get the configuration of the given table.

Parameters

• connection (Connection) – A connection to the database.

• table (str) – The name of the table to get the configuration for.

Returns The configuration of the given table

Return type dict

bigchaindb.backend.rethinkdb.admin.reconfigure(connection, *, table, shards, repli-
cas, primary_replica_tag=None,
dry_run=False, nonvot-
ing_replica_tags=None)

Reconfigures the given table.

Parameters

• connection (Connection) – A connection to the database.

• table (str) – The name of the table to reconfigure.

• shards (int) – The number of shards, an integer from 1-64.

• replicas (int | dict) –

– If replicas is an integer, it specifies the number of replicas per shard. Specifying more
replicas than there are servers will return an error.

– If replicas is a dictionary, it specifies key-value pairs of server tags and the number of
replicas to assign to those servers:

{'africa': 2, 'asia': 4, 'europe': 2, ...}

• primary_replica_tag (str) – The primary server specified by its server tag. Re-
quired if replicas is a dictionary. The tag must be in the replicas dictionary. This
must not be specified if replicas is an integer. Defaults to None.

• dry_run (bool) – If True the generated configuration will not be applied to the table,
only returned. Defaults to False.

• nonvoting_replica_tags (list of str) – Replicas with these server tags will
be added to the nonvoting_replicas list of the resulting configuration. Defaults to
None.

Returns

A dictionary with possibly three keys:

124 Chapter 15. Appendices

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

BigchainDB Server Documentation, Release 1.0.1

• reconfigured: the number of tables reconfigured. This will be 0 if dry_run is
True.

• config_changes: a list of new and old table configuration values.

• status_changes: a list of new and old table status values.

For more information please consult RethinkDB’s documentation ReQL command: re-
configure.

Return type dict

Raises OperationError – If the reconfiguration fails due to a RethinkDB
ReqlOpFailedError or ReqlQueryLogicError.

bigchaindb.backend.rethinkdb.admin.set_shards(connection, *, shards, dry_run=False)
Sets the shards for the tables TABLES.

Parameters

• connection (Connection) – A connection to the database.

• shards (int) – The number of shards, an integer from 1-64.

• dry_run (bool) – If True the generated configuration will not be applied to the table,
only returned. Defaults to False.

Returns

A dictionary with the configuration and status changes. For more details please see
reconfigure().

Return type dict

bigchaindb.backend.rethinkdb.admin.set_replicas(connection, *, replicas,
dry_run=False)

Sets the replicas for the tables TABLES.

Parameters

• connection (Connection) – A connection to the database.

• replicas (int) – The number of replicas per shard. Specifying more replicas than there
are servers will return an error.

• dry_run (bool) – If True the generated configuration will not be applied to the table,
only returned. Defaults to False.

Returns

A dictionary with the configuration and status changes. For more details please see
reconfigure().

Return type dict

MongoDB Backend

Stay tuned!

15.9. Database Backend Interfaces 125

https://rethinkdb.com/api/python/reconfigure/
https://rethinkdb.com/api/python/reconfigure/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

BigchainDB Server Documentation, Release 1.0.1

Command Line Interface

bigchaindb.commands.bigchaindb

Implementation of the bigchaindb command, the command-line interface (CLI) for BigchainDB Server.

bigchaindb.commands.bigchaindb.run_show_config(args)
Show the current configuration

bigchaindb.commands.bigchaindb.run_configure(args, skip_if_exists=False)
Run a script to configure the current node.

Parameters skip_if_exists (bool) – skip the function if a config file already exists

bigchaindb.commands.bigchaindb.run_export_my_pubkey(args)
Export this node’s public key to standard output

bigchaindb.commands.bigchaindb.run_init(args)
Initialize the database

bigchaindb.commands.bigchaindb.run_drop(args)
Drop the database

bigchaindb.commands.bigchaindb.run_start(args)
Start the processes to run the node

bigchaindb.commands.utils

Utility functions and basic common arguments for argparse.ArgumentParser.

bigchaindb.commands.utils.configure_bigchaindb(command)
Decorator to be used by command line functions, such that the configuration of bigchaindb is performed before
the execution of the command.

Parameters command – The command to decorate.

Returns The command wrapper function.

bigchaindb.commands.utils.start_logging_process(command)
Decorator to start the logging subscriber process.

Parameters command – The command to decorate.

Returns The command wrapper function.

Important: Configuration, if needed, should be applied before invoking this decorator, as starting the
subscriber process for logging will configure the root logger for the child process based on the state of
bigchaindb.config at the moment this decorator is invoked.

bigchaindb.commands.utils.input_on_stderr(prompt=’‘, default=None, convert=None)
Output a string to stderr and wait for input.

Parameters

• prompt (str) – the message to display.

• default – the default value to return if the user leaves the field empty

• convert (callable) – a callable to be used to convert the value the user inserted. If
None, the type of default will be used.

126 Chapter 15. Appendices

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable

BigchainDB Server Documentation, Release 1.0.1

bigchaindb.commands.utils.start_rethinkdb()
Start RethinkDB as a child process and wait for it to be available.

Raises :class:‘~bigchaindb.common.exceptions.StartupError‘ if – RethinkDB cannot be started.

bigchaindb.commands.utils.start(parser, argv, scope)
Utility function to execute a subcommand.

The function will look up in the scope if there is a function called run_<parser.args.command> and
will run it using parser.args as first positional argument.

Parameters

• parser – an ArgumentParser instance.

• argv – the list of command line arguments without the script name.

• scope (dict) – map containing (eventually) the functions to be called.

Raises NotImplementedError – if scope doesn’t contain a function called run_<parser.
args.command>.

bigchaindb.commands.utils.mongodb_host(host)
Utility function that works as a type for mongodb host args.

This function validates the host args provided by to the add-replicas and remove-replicas com-
mands and checks if each arg is in the form “host:port”

Parameters host (str) – A string containing hostname and port (e.g. “host:port”)

Raises ArgumentTypeError – if it fails to parse the argument

Basic AWS Setup

Before you can deploy anything on AWS, you must do a few things.

Get an AWS Account

If you don’t already have an AWS account, you can sign up for one for free at aws.amazon.com.

Install the AWS Command-Line Interface

To install the AWS Command-Line Interface (CLI), just do:

pip install awscli

Create an AWS Access Key

The next thing you’ll need is AWS access keys (access key ID and secret access key). If you don’t have those, see the
AWS documentation about access keys.

You should also pick a default AWS region name (e.g. eu-central-1). That’s where your cluster will run. The
AWS documentation has a list of them.

Once you’ve got your AWS access key, and you’ve picked a default AWS region name, go to a terminal session and
enter:

15.11. Basic AWS Setup 127

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region

BigchainDB Server Documentation, Release 1.0.1

aws configure

and answer the four questions. For example:

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: eu-central-1
Default output format [None]: [Press Enter]

This writes two files: ~/.aws/credentials and ~/.aws/config. AWS tools and packages look for those
files.

Generate an RSA Key Pair for SSH

Eventually, you’ll have one or more instances (virtual machines) running on AWS and you’ll want to SSH to them. To
do that, you need a public/private key pair. The public key will be sent to AWS, and you can tell AWS to put it in any
instances you provision there. You’ll keep the private key on your local workstation.

See the page about how to generate a key pair for SSH.

Send the Public Key to AWS

To send the public key to AWS, use the AWS Command-Line Interface:

aws ec2 import-key-pair \
--key-name "<key-name>" \
--public-key-material file://~/.ssh/<key-name>.pub

If you’re curious why there’s a file:// in front of the path to the public key, see issue aws/aws-cli#41 on GitHub.

If you want to verify that your key pair was imported by AWS, go to the Amazon EC2 console, select the region you
gave above when you did aws configure (e.g. eu-central-1), click on Key Pairs in the left sidebar, and check that
<key-name> is listed.

Deploy a RethinkDB-Based Testing Cluster on AWS

This section explains a way to deploy a RethinkDB-based cluster of BigchainDB nodes on Amazon Web Services
(AWS) for testing purposes.

Why?

Why would anyone want to deploy a centrally-controlled BigchainDB cluster? Isn’t BigchainDB supposed to be
decentralized, where each node is controlled by a different person or organization?

Yes! These scripts are for deploying a testing cluster, not a production cluster.

How?

We use some Bash and Python scripts to launch several instances (virtual servers) on Amazon Elastic Compute Cloud
(EC2). Then we use Fabric to install RethinkDB and BigchainDB on all those instances.

128 Chapter 15. Appendices

https://github.com/aws/aws-cli/issues/41
https://console.aws.amazon.com/ec2/v2/home

BigchainDB Server Documentation, Release 1.0.1

Python Setup

The instructions that follow have been tested on Ubuntu 16.04. Similar instructions should work on similar Linux
distros.

Note: Our Python scripts for deploying to AWS use Python 2 because Fabric doesn’t work with Python 3.

You must install the Python package named fabric, but it depends on the cryptography package, and that
depends on some OS-level packages. On Ubuntu 16.04, you can install those OS-level packages using:

sudo apt-get install build-essential libssl-dev libffi-dev python-dev

For other operating systems, see the installation instructions for the cryptography package.

Maybe create a Python 2 virtual environment and activate it. Then install the following Python packages (in that virtual
environment):

pip install fabric fabtools requests boto3 awscli

What did you just install?

• “Fabric is a Python (2.5-2.7) library and command-line tool for streamlining the use of SSH for application
deployment or systems administration tasks.”

• fabtools are “tools for writing awesome Fabric files”

• requests is a Python package/library for sending HTTP requests

• “Boto is the Amazon Web Services (AWS) SDK for Python, which allows Python developers to write software
that makes use of Amazon services like S3 and EC2.” (boto3 is the name of the latest Boto package.)

• The aws-cli package, which is an AWS Command Line Interface (CLI).

Setting up in AWS

See the page about basic AWS Setup in the Appendices.

Get Enough Amazon Elastic IP Addresses

The AWS cluster deployment scripts use elastic IP addresses (although that may change in the future). By default,
AWS accounts get five elastic IP addresses. If you want to deploy a cluster with more than five nodes, then you will
need more than five elastic IP addresses; you may have to apply for those; see the AWS documentation on elastic IP
addresses.

Create an Amazon EC2 Security Group

Go to the AWS EC2 Console and select “Security Groups” in the left sidebar. Click the “Create Security Group”
button. You can name it whatever you like. (Notes: The default name in the example AWS deployment configuration
file is bigchaindb. We had problems with names containing dashes.) The description should be something to help
you remember what the security group is for.

For a super lax, somewhat risky, anything-can-enter security group, add these rules for Inbound traffic:

• Type = All TCP, Protocol = TCP, Port Range = 0-65535, Source = 0.0.0.0/0

• Type = SSH, Protocol = SSH, Port Range = 22, Source = 0.0.0.0/0

• Type = All UDP, Protocol = UDP, Port Range = 0-65535, Source = 0.0.0.0/0

15.12. Deploy a RethinkDB-Based Testing Cluster on AWS 129

https://cryptography.io/en/latest/installation/
http://www.fabfile.org/
https://github.com/fabtools/fabtools
http://docs.python-requests.org/en/master/
https://boto3.readthedocs.io/en/latest/
https://pypi.python.org/pypi/awscli
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

BigchainDB Server Documentation, Release 1.0.1

• Type = All ICMP, Protocol = ICMP, Port Range = 0-65535, Source = 0.0.0.0/0

(Note: Source = 0.0.0.0/0 is CIDR notation for “allow this traffic to come from any IP address.”)

If you want to set up a more secure security group, see the Notes for Firewall Setup.

Deploy a BigchainDB Cluster

Step 1

Suppose N is the number of nodes you want in your BigchainDB cluster. If you already have a set of N BigchainDB
configuration files in the deploy-cluster-aws/confiles directory, then you can jump to the next step. To
create such a set, you can do something like:

in a Python 3 virtual environment where bigchaindb is installed
cd bigchaindb
cd deploy-cluster-aws
./make_confiles.sh confiles 3

That will create three (3) default BigchainDB configuration files in the deploy-cluster-aws/confiles direc-
tory (which will be created if it doesn’t already exist). The three files will be named bcdb_conf0, bcdb_conf1,
and bcdb_conf2.

You can look inside those files if you’re curious. For example, the default keyring is an empty list. Later, the deploy-
ment script automatically changes the keyring of each node to be a list of the public keys of all other nodes. Other
changes are also made. That is, the configuration files generated in this step are not what will be sent to the deployed
nodes; they’re just a starting point.

Step 2

Step 2 is to make an AWS deployment configuration file, if necessary. There’s an example AWS configuration file
named example_deploy_conf.py. It has many comments explaining each setting. The settings in that file are
(or should be):

NUM_NODES=3
BRANCH="master"
SSH_KEY_NAME="not-set-yet"
USE_KEYPAIRS_FILE=False
IMAGE_ID="ami-8504fdea"
INSTANCE_TYPE="t2.medium"
SECURITY_GROUP="bigchaindb"
USING_EBS=True
EBS_VOLUME_SIZE=30
EBS_OPTIMIZED=False
ENABLE_WEB_ADMIN=True
BIND_HTTP_TO_LOCALHOST=True

Make a copy of that file and call it whatever you like (e.g. cp example_deploy_conf.py
my_deploy_conf.py). You can leave most of the settings at their default values, but you must change the value
of SSH_KEY_NAME to the name of your private SSH key. You can do that with a text editor. Set SSH_KEY_NAME to
the name you used for <key-name> when you generated an RSA key pair for SSH (in basic AWS setup).

You’ll also want to change the IMAGE_ID to one that’s up-to-date and available in your AWS region. If you don’t
remember your AWS region, then look in your $HOME/.aws/config file. You can find an up-to-date Ubuntu
image ID for your region at https://cloud-images.ubuntu.com/locator/ec2/. An example search string is “eu-central-1
16.04 LTS amd64 hvm:ebs-ssd”. You should replace “eu-central-1” with your region name.

130 Chapter 15. Appendices

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://cloud-images.ubuntu.com/locator/ec2/

BigchainDB Server Documentation, Release 1.0.1

If you want your nodes to have a predictable set of pre-generated keypairs, then you should 1) set
USE_KEYPAIRS_FILE=True in the AWS deployment configuration file, and 2) provide a keypairs.py
file containing enough keypairs for all of your nodes. You can generate a keypairs.py file using the
write_keypairs_file.py script. For example:

in a Python 3 virtual environment where bigchaindb is installed
cd bigchaindb
cd deploy-cluster-aws
python3 write_keypairs_file.py 100

The above command generates a keypairs.py file with 100 keypairs. You can generate more keypairs than you
need, so you can use the same list over and over again, for different numbers of servers. The deployment scripts will
only use the first NUM_NODES keypairs.

Step 3

Step 3 is to launch the nodes (“instances”) on AWS, to install all the necessary software on them, configure the
software, run the software, and more. Here’s how you’d do that:

in a Python 2.5-2.7 virtual environment where fabric, boto3, etc. are installed
cd bigchaindb
cd deploy-cluster-aws
./awsdeploy.sh my_deploy_conf.py
Only if you want to set the replication factor to 3
fab set_replicas:3
Only if you want to start BigchainDB on all the nodes:
fab start_bigchaindb

awsdeploy.sh is a Bash script which calls some Python and Fabric scripts. If you’re curious what it does, the
source code has many explanatory comments.

It should take a few minutes for the deployment to finish. If you run into problems, see the section on Known
Deployment Issues below.

The EC2 Console has a section where you can see all the instances you have running on EC2. You can ssh into a
running instance using a command like:

ssh -i pem/bigchaindb.pem ubuntu@ec2-52-29-197-211.eu-central-1.compute.amazonaws.com

except you’d replace the ec2-52-29-197-211.eu-central-1.compute.amazonaws.com with the pub-
lic DNS name of the instance you want to ssh into. You can get that from the EC2 Console: just click on an instance
and look in its details pane at the bottom of the screen. Some commands you might try:

ip addr show
sudo service rethinkdb status
bigchaindb --help
bigchaindb show-config

If you enabled the RethinkDB web interface (by setting ENABLE_WEB_ADMIN=True in your AWS configuration
file), then you can also check that. The way to do that depends on how BIND_HTTP_TO_LOCALHOST was set (in
your AWS deployment configuration file):

• If it was set to False, then just go to your web browser and visit a web address like http://
ec2-52-29-197-211.eu-central-1.compute.amazonaws.com:8080/. (Replace ec2-...
aws.com with the hostname of one of your instances.)

• If it was set to True (the default in the example config file), then follow the instructions in the “Via a SOCKS
proxy” section of the “Secure your cluster” page of the RethinkDB documentation.

15.12. Deploy a RethinkDB-Based Testing Cluster on AWS 131

https://github.com/bigchaindb/bigchaindb/blob/master/deploy-cluster-aws/awsdeploy.sh
https://github.com/bigchaindb/bigchaindb/blob/master/deploy-cluster-aws/awsdeploy.sh
https://www.rethinkdb.com/docs/security/

BigchainDB Server Documentation, Release 1.0.1

Server Monitoring with New Relic

New Relic is a business that provides several monitoring services. One of those services, called Server Monitoring,
can be used to monitor things like CPU usage and Network I/O on BigchainDB instances. To do that:

1. Sign up for a New Relic account

2. Get your New Relic license key

3. Put that key in an environment variable named NEWRELIC_KEY. For example, you might add a line like the
following to your ~/.bashrc file (if you use Bash): export NEWRELIC_KEY=<insert your key
here>

4. Once you’ve deployed a BigchainDB cluster on AWS as above, you can install a New Relic system monitor
(agent) on all the instances using:

in a Python 2.5-2.7 virtual environment where fabric, boto3, etc. are installed
fab install_newrelic

Once the New Relic system monitor (agent) is installed on the instances, it will start sending server stats to New Relic
on a regular basis. It may take a few minutes for data to show up in your New Relic dashboard (under New Relic
Servers).

Shutting Down a Cluster

There are fees associated with running instances on EC2, so if you’re not using them, you should terminate them. You
can do that using the AWS EC2 Console.

The same is true of your allocated elastic IP addresses. There’s a small fee to keep them allocated if they’re not
associated with a running instance. You can release them using the AWS EC2 Console, or by using a handy little
script named release_eips.py. For example:

$ python release_eips.py
You have 2 allocated elactic IPs which are not associated with instances
0: Releasing 52.58.110.110
(It has Domain = vpc.)
1: Releasing 52.58.107.211
(It has Domain = vpc.)

Known Deployment Issues

NetworkError

If you tested with a high sequence it might be possible that you run into an error message like this:

NetworkError: Host key for ec2-xx-xx-xx-xx.eu-central-1.compute.amazonaws.com
did not match pre-existing key! Server's key was changed recently, or possible
man-in-the-middle attack.

If so, just clean up your known_hosts file and start again. For example, you might copy your current
known_hosts file to old_known_hosts like so:

mv ~/.ssh/known_hosts ~/.ssh/old_known_hosts

Then terminate your instances and try deploying again with a different tag.

132 Chapter 15. Appendices

https://newrelic.com/

BigchainDB Server Documentation, Release 1.0.1

Failure of sudo apt-get update

The first thing that’s done on all the instances, once they’re running, is basically sudo apt-get update. Some-
times that fails. If so, just terminate your instances and try deploying again with a different tag. (These problems seem
to be time-bounded, so maybe wait a couple of hours before retrying.)

Failure when Installing Base Software

If you get an error with installing the base software on the instances, then just terminate your instances and try
deploying again with a different tag.

Template: Using Terraform to Provision an Ubuntu Machine on AWS

This page explains a way to use Terraform to provision an Ubuntu machine (i.e. an EC2 instance with Ubuntu 16.04)
and other resources on AWS. That machine can then be used to host a one-machine BigchainDB node, for example.

Note: We’re not actively maintaining the associated Terraform files. You may find them useful nevertheless,
which is why we moved this page to the Appendices rather than deleting it.

Install Terraform

The Terraform documentation has installation instructions for all common operating systems.

If you don’t want to run Terraform on your local machine, you can install it on a cloud machine under your control
(e.g. on AWS).

Note: Hashicorp has an enterprise version of Terraform called “Terraform Enterprise.” You can license it by itself or
get it as part of Atlas. If you decide to license Terraform Enterprise or Atlas, be sure to install it on your own hosting
(i.e. “on premise”), not on the hosting provided by Hashicorp. The reason is that BigchainDB clusters are supposed
to be decentralized. If everyone used Hashicorp’s hosted Atlas, then that would be a point of centralization.

Ubuntu Installation Tips

If you want to install Terraform on Ubuntu, first download the .zip file. Then install it in /opt:

sudo mkdir -p /opt/terraform
sudo unzip path/to/zip-file.zip -d /opt/terraform

Why install it in /opt? See the answers at Ask Ubuntu.

Next, add /opt/terraform to your path. If you use bash for your shell, then you could add this line to ~/.
bashrc:

export PATH="/opt/terraform:$PATH"

After doing that, relaunch your shell or force it to read ~/.bashrc again, e.g. by doing source ~/.bashrc.
You can verify that terraform is installed and in your path by doing:

terraform --version

It should say the current version of Terraform.

15.13. Template: Using Terraform to Provision an Ubuntu Machine on AWS 133

http://askubuntu.com/questions/222348/what-does-sudo-apt-get-update-do
https://www.terraform.io/
https://aws.amazon.com/
https://www.terraform.io/intro/getting-started/install.html
https://www.terraform.io/downloads.html
https://askubuntu.com/questions/1148/what-is-the-best-place-to-install-user-apps

BigchainDB Server Documentation, Release 1.0.1

Get Set Up to Use Terraform

First, do the basic AWS setup steps outlined in the Appendices.

Then go to the .../bigchaindb/ntools/one-m/aws/ directory and open the file variables.tf. Most of
the variables have sensible default values, but you can change them if you like. In particular, you may want to change
aws_region. (Terraform looks in ~/.aws/credentials to get your AWS credentials, so you don’t have to
enter those anywhere.)

The ssh_key_name has no default value, so Terraform will prompt you every time it needs it.

To see what Terraform will do, run:

terraform plan

It should ask you the value of ssh_key_name.

It figured out the plan by reading all the .tf Terraform files in the directory.

If you don’t want to be asked for the ssh_key_name, you can change the default value of ssh_key_name (in the
file variables.tf) or you can set an environmen variable named TF_VAR_ssh_key_name.

Use Terraform to Provision Resources

To provision all the resources specified in the plan, do the following. Note: This will provision actual resources on
AWS, and those cost money. Be sure to shut down the resources you don’t want to keep running later, otherwise
the cost will keep growing.

terraform apply

Terraform will report its progress as it provisions all the resources. Once it’s done, you can go to the Amazon EC2
web console and see the instance, its security group, its elastic IP, and its attached storage volumes (one for the root
directory and one for RethinkDB storage).

At this point, there is no software installed on the instance except for Ubuntu 16.04 and whatever else came with the
Amazon Machine Image (AMI) specified in the Terraform configuration (files).

The next step is to install, configure and run all the necessary software for a BigchainDB node. You could use our
example Ansible playbook to do that.

Optional: “Destroy” the Resources

If you want to shut down all the resources just provisioned, you must first disable termination protection on the
instance:

1. Go to the EC2 console and select the instance you just launched. It should be named BigchainDB_node.

2. Click Actions > Instance Settings > Change Termination Protection > Yes, Disable

3. Back in your terminal, do terraform destroy

Terraform should “destroy” (i.e. terminate or delete) all the AWS resources you provisioned above.

If it fails (e.g. because of an attached and mounted EBS volume), then you can terminate the instance using the EC2
console: Actions > Instance State > Terminate > Yes, Terminate. Once the instance is terminated, you should still
do terraform destroy to make sure that all the other resources are destroyed.

134 Chapter 15. Appendices

https://www.terraform.io/docs/configuration/variables.html

BigchainDB Server Documentation, Release 1.0.1

Template: Ansible Playbook to Run a BigchainDB Node on an Ubuntu
Machine

This page explains how to use Ansible to install, configure and run all the software needed to run a one-machine
BigchainDB node on a server running Ubuntu 16.04.

Note: We’re not actively maintaining the associated Ansible files (e.g. playbooks). They are RethinkDB-specific,
even though we now recommend using MongoDB. You may find the old Ansible stuff useful nevertheless, which
is why we moved this page to the Appendices rather than deleting it.

Install Ansible

The Ansible documentation has installation instructions. Note the control machine requirements: at the time of writing,
Ansible required Python 2.6 or 2.7. (Python 3 support is coming: “Ansible 2.2 features a tech preview of Python 3
support.” and the latest version, as of January 31, 2017, was 2.2.1.0. For now, it’s probably best to use it with Python
2.)

For example, you could create a special Python 2.x virtualenv named ansenv and then install Ansible in it:

cd repos/bigchaindb/ntools
virtualenv -p /usr/local/lib/python2.7.11/bin/python ansenv
source ansenv/bin/activate
pip install ansible

About Our Example Ansible Playbook

Our example Ansible playbook installs, configures and runs a basic BigchainDB node on an Ubuntu 16.04 machine.
That playbook is in .../bigchaindb/ntools/one-m/ansible/one-m-node.yml.

When you run the playbook (as per the instructions below), it ensures all the necessary software is installed, configured
and running. It can be used to get a BigchainDB node set up on a bare Ubuntu 16.04 machine, but it can also be used
to ensure that everything is okay on a running BigchainDB node. (If you run the playbook against a host where
everything is okay, then it won’t change anything on that host.)

Create an Ansible Inventory File

An Ansible “inventory” file is a file which lists all the hosts (machines) you want to manage using Ansible. (Ansible
will communicate with them via SSH.) Right now, we only want to manage one host.

First, determine the public IP address of the host (i.e. something like 192.0.2.128).

Then create a one-line text file named hosts by doing this:

cd to the directory .../bigchaindb/ntools/one-m/ansible
echo "192.0.2.128" > hosts

but replace 192.0.2.128 with the IP address of the host.

Run the Ansible Playbook(s)

The latest Ubuntu 16.04 AMIs from Canonical don’t include Python 2 (which is required by Ansible), so the first step
is to run a small Ansible playbook to install Python 2 on the managed node:

15.14. Template: Ansible Playbook to Run a BigchainDB Node on an Ubuntu Machine 135

https://www.ansible.com/
https://docs.ansible.com/ansible/intro_installation.html
https://docs.ansible.com/ansible/python_3_support.html

BigchainDB Server Documentation, Release 1.0.1

cd to the directory .../bigchaindb/ntools/one-m/ansible
ansible-playbook -i hosts --private-key ~/.ssh/<key-name> install-python2.yml

where <key-name> should be replaced by the name of the SSH private key you created earlier (for SSHing to the
host machine at your cloud hosting provider).

The next step is to run the Ansible playbook named one-m-node.yml:

cd to the directory .../bigchaindb/ntools/one-m/ansible
ansible-playbook -i hosts --private-key ~/.ssh/<key-name> one-m-node.yml

What did you just do? Running that playbook ensures all the software necessary for a one-machine BigchainDB node
is installed, configured, and running properly. You can run that playbook on a regular schedule to ensure that the
system stays properly configured. If something is okay, it does nothing; it only takes action when something is not
as-desired.

Some Notes on the One-Machine Node You Just Got Running

• It ensures that the installed version of RethinkDB is the latest. You can change that by changing the installation
task.

• It uses a very basic RethinkDB configuration file based on bigchaindb/ntools/one-m/ansible/
roles/rethinkdb/templates/rethinkdb.conf.j2.

• If you edit the RethinkDB configuration file, then running the Ansible playbook will not restart RethinkDB
for you. You must do that manually. (You can stop RethinkDB using sudo /etc/init.d/rethinkdb
stop; run the playbook to get RethinkDB started again. This assumes you’re using init.d, which is what the
Ansible playbook assumes. If you want to use systemd, you’ll have to edit the playbook accordingly, and stop
RethinkDB using sudo systemctl stop rethinkdb@<name_instance>.)

• It generates and uses a default BigchainDB configuration file, which it stores in ~/.bigchaindb (the default
location).

• If you edit the BigchainDB configuration file, then running the Ansible playbook will not restart BigchainDB
for you. You must do that manually. (You could stop it using sudo killall -9 bigchaindb. Run the
playbook to get it started again.)

Optional: Create an Ansible Config File

The above command (ansible-playbook -i ...) is fairly long. You can omit the optional arguments if you
put their values in an Ansible configuration file (config file) instead. There are many places where you can put a config
file, but to make one specifically for the “one-m” case, you should put it in .../bigchaindb/ntools/one-m/
ansible/. In that directory, create a file named ansible.cfg with the following contents:

[defaults]
private_key_file = $HOME/.ssh/<key-name>
inventory = hosts

where, as before, <key-name> must be replaced.

Next Steps

You could make changes to the Ansible playbook (and the resources it uses) to make the node more production-worthy.
See the section on production node assumptions, components and requirements.

136 Chapter 15. Appendices

https://docs.ansible.com/ansible/intro_configuration.html

BigchainDB Server Documentation, Release 1.0.1

Azure Quickstart Template

This page outlines how to run a single BigchainDB node on the Microsoft Azure public cloud, with RethinkDB as the
database backend. It uses an Azure Quickstart Template. That template is dated because we now recommend using
MongoDB instead of RethinkDB. That’s why we moved this page to the Appendices.

Note: There was an Azure quickstart template in the blockchain directory of Microsoft’s Azure/
azure-quickstart-templates repository on GitHub. It’s gone now; it was replaced by the one described
here.

One can deploy a BigchainDB node on Azure using the template in the bigchaindb-on-ubuntu directory of
Microsoft’s Azure/azure-quickstart-templates repository on GitHub. Here’s how:

1. Go to that directory on GitHub.

2. Click the button labelled Deploy to Azure.

3. If you’re not already logged in to Microsoft Azure, then you’ll be prompted to login. If you don’t have an
account, then you’ll have to create one.

4. Once you are logged in to the Microsoft Azure Portal, you should be taken to a form titled BigchainDB. Some
notes to help with filling in that form are available below.

5. Deployment takes a few minutes. You can follow the notifications by clicking the bell icon at the top of the
screen. At the time of writing, the final deployment operation (running the init.sh script) was failing, but a
pull request (#2884) has been made to fix that and these instructions say what you can do before that pull request
gets merged...

6. Find out the public IP address of the virtual machine in the Azure Portal. Example: 40.69.87.250

7. ssh in to the virtual machine at that IP address, i.e. do ssh <Admin_username>@<machine-ip> where
<Admin_username> is the admin username you entered into the form and <machine-ip> is the virtual
machine IP address determined in the last step. Example: ssh bcdbadmin@40.69.87.250

8. You should be prompted for a password. Give the <Admin_password> you entered into the form.

9. Configure BigchainDB Server by doing:

bigchaindb configure rethinkdb

It will ask you several questions. You can press Enter (or Return) to accept the default for all of them except for
one. When it asks API Server bind? (default ‘localhost:9984‘):, you should answer:

API Server bind? (default `localhost:9984`): 0.0.0.0:9984

Finally, run BigchainDB Server by doing:

bigchaindb start

BigchainDB Server should now be running on the Azure virtual machine.

Remember to shut everything down when you’re done (via the Azure Portal), because it generally costs money to run
stuff on Azure.

Notes on the Blockchain Template Form Fields

15.15. Azure Quickstart Template 137

https://github.com/Azure/azure-quickstart-templates/tree/master/bigchaindb-on-ubuntu
https://github.com/Azure/azure-quickstart-templates/pull/2884

BigchainDB Server Documentation, Release 1.0.1

BASICS

Resource group - You can use an existing resource group (if you have one) or create a new one named whatever you
like, but avoid using fancy characters in the name because Azure might have problems if you do.

Location is the Microsoft Azure data center where you want the BigchainDB node to run. Pick one close to where
you are located.

SETTINGS

You can use whatever Admin_username and Admin_password you like (provided you don’t get too fancy). It will
complain if your password is too simple. You’ll need these later to ssh into the virtual machine.

Dns_label_prefix - Once your virtual machine is deployed, it will have a public IP address and a DNS name (host-
name) something like <DNSprefix>.northeurope.cloudapp.azure.com. The <DNSprefix> will be
whatever you enter into this field.

Virtual_machine_size - This should be one of Azure’s standard virtual machine sizes, such as Standard_D1_v2.
There’s a list of virtual machine sizes in the Azure docs.

_artifacts Location - Leave this alone.

_artifacts Location Sas Token - Leave this alone (blank).

TERMS AND CONDITIONS

Read the terms and conditions. If you agree to them, then check the checkbox.

Finally, click the button labelled Purchase. (Generally speaking, it costs money to run stuff on Azure.)

Generate a Key Pair for SSH

This page describes how to use ssh-keygen to generate a public/private RSA key pair that can be used with SSH.
(Note: ssh-keygen is found on most Linux and Unix-like operating systems; if you’re using Windows, then you’ll
have to use another tool, such as PuTTYgen.)

By convention, SSH key pairs get stored in the ~/.ssh/ directory. Check what keys you already have there:

ls -1 ~/.ssh/

Next, make up a new key pair name (called <name> below). Here are some ideas:

• aws-bdb-2

• tim-bdb-azure

• chris-bcdb-key

Next, generate a public/private RSA key pair with that name:

ssh-keygen -t rsa -C "<name>" -f ~/.ssh/<name>

It will ask you for a passphrase. You can use whatever passphrase you like, but don’t lose it. Two keys (files) will be
created in ~/.ssh/:

1. ~/.ssh/<name>.pub is the public key

2. ~/.ssh/<name> is the private key

138 Chapter 15. Appendices

https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json

BigchainDB Server Documentation, Release 1.0.1

Notes for Firewall Setup

This is a page of notes on the ports potentially used by BigchainDB nodes and the traffic they should expect, to help
with firewall setup (and security group setup on AWS). This page is not a firewall tutorial or step-by-step guide.

Expected Unsolicited Inbound Traffic

Assuming you aren’t exposing the RethinkDB web interface on port 8080 (or any other port, because there are more
secure ways to access it), there are only three ports that should expect unsolicited inbound traffic:

1. Port 22 can expect inbound SSH (TCP) traffic from the node administrator (i.e. a small set of IP addresses).

2. Port 9984 can expect inbound HTTP (TCP) traffic from BigchainDB clients sending transactions to the
BigchainDB HTTP API.

3. Port 9985 can expect inbount WebSocket traffic from BigchainDB clients.

4. If you’re using RethinkDB, Port 29015 can expect inbound TCP traffic from other RethinkDB nodes in the
RethinkDB cluster (for RethinkDB intracluster communications).

5. If you’re using MongoDB, Port 27017 can expect inbound TCP traffic from other nodes.

All other ports should only get inbound traffic in response to specific requests from inside the node.

Port 22

Port 22 is the default SSH port (TCP) so you’ll at least want to make it possible to SSH in from your remote machine(s).

Port 53

Port 53 is the default DNS port (UDP). It may be used, for example, by some package managers when look up the IP
address associated with certain package sources.

Port 80

Port 80 is the default HTTP port (TCP). It’s used by some package managers to get packages. It’s not used by the
RethinkDB web interface (see Port 8080 below) or the BigchainDB client-server HTTP API (Port 9984).

Port 123

Port 123 is the default NTP port (UDP). You should be running an NTP daemon on production BigchainDB nodes.
NTP daemons must be able to send requests to external NTP servers and accept the respones.

Port 161

Port 161 is the default SNMP port (usually UDP, sometimes TCP). SNMP is used, for example, by some server
monitoring systems.

15.17. Notes for Firewall Setup 139

https://www.rethinkdb.com/docs/security/#binding-the-web-interface-port
https://www.rethinkdb.com/docs/security/#binding-the-web-interface-port

BigchainDB Server Documentation, Release 1.0.1

Port 443

Port 443 is the default HTTPS port (TCP). You may need to open it up for outbound requests (and inbound responses)
temporarily because some RethinkDB installation instructions use wget over HTTPS to get the RethinkDB GPG key.
Package managers might also get some packages using HTTPS.

Port 8080

Port 8080 is the default port used by RethinkDB for its adminstrative web (HTTP) interface (TCP). While you can,
you shouldn’t allow traffic arbitrary external sources. You can still use the RethinkDB web interface by binding it
to localhost and then accessing it via a SOCKS proxy or reverse proxy; see “Binding the web interface port” on the
RethinkDB page about securing your cluster.

Port 9984

Port 9984 is the default port for the BigchainDB client-server HTTP API (TCP), which is served by Gunicorn HTTP
Server. It’s possible allow port 9984 to accept inbound traffic from anyone, but we recommend against doing that.
Instead, set up a reverse proxy server (e.g. using Nginx) and only allow traffic from there. Information about how to
do that can be found in the Gunicorn documentation. (They call it a proxy.)

If Gunicorn and the reverse proxy are running on the same server, then you’ll have to tell Gunicorn to listen on some
port other than 9984 (so that the reverse proxy can listen on port 9984). You can do that by setting server.bind to
‘localhost:PORT’ in the BigchainDB Configuration Settings, where PORT is whatever port you chose (e.g. 9983).

You may want to have Gunicorn and the reverse proxy running on different servers, so that both can listen on port
9984. That would also help isolate the effects of a denial-of-service attack.

Port 9985

Port 9985 is the default port for the BigchainDB WebSocket Event Stream API.

Port 28015

Port 28015 is the default port used by RethinkDB client driver connections (TCP). If your BigchainDB node is just
one server, then Port 28015 only needs to listen on localhost, because all the client drivers will be running on localhost.
Port 28015 doesn’t need to accept inbound traffic from the outside world.

Port 29015

Port 29015 is the default port for RethinkDB intracluster connections (TCP). It should only accept incoming traffic
from other RethinkDB servers in the cluster (a list of IP addresses that you should be able to find out).

Other Ports

On Linux, you can use commands such as netstat -tunlp or lsof -i to get a sense of currently open/listening
ports and connections, and the associated processes.

140 Chapter 15. Appendices

https://rethinkdb.com/docs/security/
https://rethinkdb.com/docs/security/
http://docs.gunicorn.org/en/stable/deploy.html

BigchainDB Server Documentation, Release 1.0.1

Notes on NTP Daemon Setup

There are several NTP daemons available, including:

• The reference NTP daemon (ntpd) from ntp.org; see their support website

• chrony

• OpenNTPD

• Maybe NTPsec, once it’s production-ready

• Maybe Ntimed, once it’s production-ready

• More

We suggest you run your NTP daemon in a mode which will tell your OS kernel to handle leap seconds in a particular
way: the default NTP way, so that system clock adjustments are localized and not spread out across the minutes, hours,
or days surrounding leap seconds (e.g. “slewing” or “smearing”). There’s a nice Red Hat Developer Blog post about
the various options.

Use the default mode with ntpd and chronyd. For another NTP daemon, consult its documentation.

It’s tricky to make an NTP daemon setup secure. Always install the latest version and read the documentation about
how to configure and run it securely. See the notes on firewall setup.

Amazon Linux Instances

If your BigchainDB node is running on an Amazon Linux instance (i.e. a Linux instance packaged by Amazon, not
Canonical, Red Hat, or someone else), then an NTP daemon should already be installed and configured. See the EC2
documentation on Setting the Time for Your Linux Instance.

That said, you should check which NTP daemon is installed. Is it recent? Is it configured securely?

The Ubuntu ntp Packages

The Ubuntu ntp packages are based on the reference implementation of NTP.

The following commands will uninstall the ntp and ntpdate packages, install the latest ntp package (which might
not be based on the latest ntpd code), and start the NTP daemon (a local NTP server). (ntpdate is not reinstalled
because it’s deprecated and you shouldn’t use it.)

sudo apt-get --purge remove ntp ntpdate
sudo apt-get autoremove
sudo apt-get update
sudo apt-get install ntp
That should start the NTP daemon too, but just to be sure:
sudo service ntp restart

You can check if ntpd is running using sudo ntpq -p.

You may want to use different NTP time servers. You can change them by editing the NTP config file /etc/ntp.
conf.

Note: A server running an NTP daemon can be used by others for DRDoS amplification attacks. The above installation
procedure should install a default NTP configuration file /etc/ntp.conf with the lines:

restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery

15.18. Notes on NTP Daemon Setup 141

http://support.ntp.org/bin/view/Support/WebHome
https://chrony.tuxfamily.org/index.html
http://www.openntpd.org/
https://www.ntpsec.org/
http://nwtime.org/projects/ntimed/
https://en.wikipedia.org/wiki/Ntpd#Implementations
https://developers.redhat.com/blog/2015/06/01/five-different-ways-handle-leap-seconds-ntp/
https://developers.redhat.com/blog/2015/06/01/five-different-ways-handle-leap-seconds-ntp/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://launchpad.net/ubuntu/+source/ntp
https://askubuntu.com/questions/297560/ntpd-vs-ntpdate-pros-and-cons

BigchainDB Server Documentation, Release 1.0.1

Those lines should prevent the NTP daemon from being used in an attack. (The first line is for IPv4, the second for
IPv6.)

There are additional things you can do to make NTP more secure. See the NTP Support Website for more details.

RethinkDB Requirements

The RethinkDB documentation should be your first source of information about its requirements. This page serves
mostly to document some of its more obscure requirements.

RethinkDB Server will run on any modern OS. Note that the Fedora package isn’t officially supported. Also, official
support for Windows is fairly recent (April 2016).

Storage Requirements

When it comes to storage for RethinkDB, there are many things that are nice to have (e.g. SSDs, high-speed in-
put/output [IOPS], replication, reliability, scalability, pay-for-what-you-use), but there are few requirements other
than:

1. have enough storage to store all your data (and its replicas), and

2. make sure your storage solution (hardware and interconnects) can handle your expected read & write rates.

For RethinkDB’s failover mechanisms to work, every RethinkDB table must have at least three replicas (i.e. a primary
replica and two others). For example, if you want to store 10 GB of unique data, then you need at least 30 GB of
storage. (Indexes and internal metadata are stored in RAM.)

As for the read & write rates, what do you expect those to be for your situation? It’s not enough for the storage system
alone to handle those rates: the interconnects between the nodes must also be able to handle them.

Storage Notes Specific to RethinkDB

• The RethinkDB storage engine has a number of SSD optimizations, so you can benefit from using SSDs.
(source)

• If you have an N-node RethinkDB cluster and 1) you want to use it to store an amount of data D (unique records,
before replication), 2) you want the replication factor to be R (all tables), and 3) you want N shards (all tables),
then each BigchainDB node must have storage space of at least R×D/N.

• RethinkDB tables can have at most 64 shards. What does that imply? Suppose you only have one table, with 64
shards. How big could that table be? It depends on how much data can be stored in each node. If the maximum
amount of data that a node can store is d, then the biggest-possible shard is d, and the biggest-possible table size
is 64 times that. (All shard replicas would have to be stored on other nodes beyond the initial 64.) If there are
two tables, the second table could also have 64 shards, stored on 64 other maxed-out nodes, so the total amount
of unique data in the database would be (64 shards/table)×(2 tables)×d. In general, if you have T tables, the
maximum amount of unique data that can be stored in the database (i.e. the amount of data before replication)
is 64×T×d.

• When you set up storage for your RethinkDB data, you may have to select a filesystem. (Sometimes, the
filesystem is already decided by the choice of storage.) We recommend using a filesystem that supports direct
I/O (Input/Output). Many compressed or encrypted file systems don’t support direct I/O. The ext4 filesystem
supports direct I/O (but be careful: if you enable the data=journal mode, then direct I/O support will be disabled;
the default is data=ordered). If your chosen filesystem supports direct I/O and you’re using Linux, then you don’t
need to do anything to request or enable direct I/O. RethinkDB does that.

• RethinkDB stores its data in a specific directory. You can tell RethinkDB which directory using the RethinkDB
config file, as explained below. In this documentation, we assume the directory is /data. If you set up a

142 Chapter 15. Appendices

http://support.ntp.org/bin/view/Support/WebHome
https://rethinkdb.com/docs/
https://www.rethinkdb.com/docs/install/
https://rethinkdb.com/blog/2.3-release/
https://rethinkdb.com/docs/failover/
https://www.rethinkdb.com/docs/architecture/
https://rethinkdb.com/limitations/

BigchainDB Server Documentation, Release 1.0.1

separate device (partition, RAID array, or logical volume) to store the RethinkDB data, then mount that device
on /data.

Memory (RAM) Requirements

In their FAQ, RethinkDB recommends that, “RethinkDB servers have at least 2GB of RAM...” (source)

In particular: “RethinkDB requires data structures in RAM on each server proportional to the size of the data on that
server’s disk, usually around 1% of the size of the total data set.” (source) We asked what they meant by “total data
set” and they said it’s “referring to only the data stored on the particular server.”

Also, “The storage engine is used in conjunction with a custom, B-Tree-aware caching engine which allows file sizes
many orders of magnitude greater than the amount of available memory. RethinkDB can operate on a terabyte of data
with about ten gigabytes of free RAM.” (source) (In this case, it’s the cluster which has a total of one terabyte of data,
and it’s the cluster which has a total of ten gigabytes of RAM. That is, if you add up the RethinkDB RAM on all the
servers, it’s ten gigabytes.)

In reponse to our questions about RAM requirements, @danielmewes (of RethinkDB) wrote:

... If you replicate the data, the amount of data per server increases accordingly, because multiple copies
of the same data will be held by different servers in the cluster.

For example, if you increase the data replication factor from 1 to 2 (i.e. the primary plus one copy), then that will
double the RAM needed for metadata. Also from @danielmewes:

For reasonable performance, you should probably aim at something closer to 5-10% of the data size.
[Emphasis added] The 1% is the bare minimum and doesn’t include any caching. If you want to run near
the minimum, you’ll also need to manually lower RethinkDB’s cache size through the --cache-size
parameter to free up enough RAM for the metadata overhead...

RethinkDB has documentation about its memory requirements. You can use that page to get a better estimate of how
much memory you’ll need. In particular, note that RethinkDB automatically configures the cache size limit to be about
half the available memory, but it can be no lower than 100 MB. As @danielmewes noted, you can manually change
the cache size limit (e.g. to free up RAM for queries, metadata, or other things).

If a RethinkDB process (on a server) runs out of RAM, the operating system will start swapping RAM out to disk,
slowing everything down. According to @danielmewes:

Going into swap is usually pretty bad for RethinkDB, and RethinkDB servers that have gone into swap
often become so slow that other nodes in the cluster consider them unavailable and terminate the con-
nection to them. I recommend adjusting RethinkDB’s cache size conservatively to avoid this scenario.
RethinkDB will still make use of additional RAM through the operating system’s block cache (though
less efficiently than when it can keep data in its own cache).

Filesystem Requirements

RethinkDB “supports most commonly used file systems” (source) but it has issues with BTRFS (B-tree file system).

It’s best to use a filesystem that supports direct I/O, because that will improve RethinkDB performance (if you tell
RethinkDB to use direct I/O). Many compressed or encrypted filesystems don’t support direct I/O.

Backing Up and Restoring Data

This page was written when BigchainDB only worked with RethinkDB, so its focus is on RethinkDB-based backup.
BigchainDB now supports MongoDB as a backend database and we recommend that you use MongoDB in production.

15.20. Backing Up and Restoring Data 143

https://rethinkdb.com/faq/
https://rethinkdb.com/faq/
https://rethinkdb.com/limitations/
https://github.com/rethinkdb/rethinkdb/issues/5902#issuecomment-230860607
https://www.rethinkdb.com/docs/architecture/
https://github.com/rethinkdb/rethinkdb/issues/5902#issuecomment-230860607
https://rethinkdb.com/docs/memory-usage/
https://www.rethinkdb.com/docs/architecture/
https://github.com/rethinkdb/rethinkdb/issues/2781

BigchainDB Server Documentation, Release 1.0.1

Nevertheless, some of the following backup ideas are still relevant regardless of the backend database being used, so
we moved this page to the Appendices.

RethinkDB’s Replication as a form of Backup

RethinkDB already has internal replication: every document is stored on R different nodes, where R is the replication
factor (set using bigchaindb set-replicas R). Those replicas can be thought of as “live backups” because if
one node goes down, the cluster will continue to work and no data will be lost.

At this point, there should be someone saying, “But replication isn’t backup¡‘

It’s true. Replication alone isn’t enough, because something bad might happen inside the database, and that could
affect the replicas. For example, what if someone logged in as a RethinkDB admin and did a “drop table”? We
currently plan for each node to be protected by a next-generation firewall (or something similar) to prevent such things
from getting very far. For example, see issue #240.

Nevertheless, you should still consider having normal, “cold” backups, because bad things can still happen.

Live Replication of RethinkDB Data Files

Each BigchainDB node stores its subset of the RethinkDB data in one directory. You could set up the node’s file
system so that directory lives on its own hard drive. Furthermore, you could make that hard drive part of a RAID array,
so that a second hard drive would always have a copy of the original. If the original hard drive fails, then the second
hard drive could take its place and the node would continue to function. Meanwhile, the original hard drive could be
replaced.

That’s just one possible way of setting up the file system so as to provide extra reliability.

Another way to get similar reliability would be to mount the RethinkDB data directory on an Amazon EBS volume.
Each Amazon EBS volume is, “automatically replicated within its Availability Zone to protect you from component
failure, offering high availability and durability.”

See the section on setting up storage for RethinkDB for more details.

As with shard replication, live file-system replication protects against many failure modes, but it doesn’t protect against
them all. You should still consider having normal, “cold” backups.

rethinkdb dump (to a File)

RethinkDB can create an archive of all data in the cluster (or all data in specified tables), as a compressed file.
According to the RethinkDB blog post when that functionality became available:

Since the backup process is using client drivers, it automatically takes advantage of the MVCC [multiver-
sion concurrency control] functionality built into RethinkDB. It will use some cluster resources, but will
not lock out any of the clients, so you can safely run it on a live cluster.

To back up all the data in a BigchainDB cluster, the RethinkDB admin user must run a command like the following on
one of the nodes:

rethinkdb dump -e bigchain.bigchain -e bigchain.votes

That should write a file named rethinkdb_dump_<date>_<time>.tar.gz. The -e option is used to specify
which tables should be exported. You probably don’t need to export the backlog table, but you definitely need to
export the bigchain and votes tables. bigchain.votes means the votes table in the RethinkDB database named

144 Chapter 15. Appendices

https://github.com/bigchaindb/bigchaindb/issues/240
https://en.wikipedia.org/wiki/RAID
https://aws.amazon.com/ebs/
https://rethinkdb.com/blog/1.7-release/

BigchainDB Server Documentation, Release 1.0.1

bigchain. It’s possible that your database has a different name: the database name is a BigchainDB configura-
tion setting. The default name is bigchain. (Tip: you can see the values of all configuration settings using the
bigchaindb show-config command.)

There’s more information about the rethinkdb dump command in the RethinkDB documentation. It also explains
how to restore data to a cluster from an archive file.

Notes

• If the rethinkdb dump subcommand fails and the last line of the Traceback says “NameError: name ‘file’
is not defined”, then you need to update your RethinkDB Python driver; do a pip install --upgrade
rethinkdb

• It might take a long time to backup data this way. The more data, the longer it will take.

• You need enough free disk space to store the backup file.

• If a document changes after the backup starts but before it ends, then the changed document may not be in the
final backup. This shouldn’t be a problem for BigchainDB, because blocks and votes can’t change anyway.

• rethinkdb dump saves data and secondary indexes, but does not save cluster metadata. You will need to
recreate your cluster setup yourself after you run rethinkdb restore.

• RethinkDB also has subcommands to import/export collections of JSON or CSV files. While one could use
those for backup/restore, it wouldn’t be very practical.

Client-Side Backup

In the future, it will be possible for clients to query for the blocks containing the transactions they care about, and for
the votes on those blocks. They could save a local copy of those blocks and votes.

How could we be sure blocks and votes from a client are valid?

All blocks and votes are signed by cluster nodes (owned and operated by consortium members). Only cluster nodes
can produce valid signatures because only cluster nodes have the necessary private keys. A client can’t produce a valid
signature for a block or vote.

Could we restore an entire BigchainDB database using client-saved blocks and votes?

Yes, in principle, but it would be difficult to know if you’ve recovered every block and vote. Votes link to the block
they’re voting on and to the previous block, so one could detect some missing blocks. It would be difficult to know if
you’ve recovered all the votes.

Backup by Copying RethinkDB Data Files

It’s possible to back up a BigchainDB database by creating a point-in-time copy of the RethinkDB data files (on
all nodes, at roughly the same time). It’s not a very practical approach to backup: the resulting set of files will be
much larger (collectively) than what one would get using rethinkdb dump, and there are no guarantees on how
consistent that data will be, especially for recently-written data.

If you’re curious about what’s involved, see the MongoDB documentation about “Backup by Copying Underlying
Data Files”. (Yes, that’s documentation for MongoDB, but the principles are the same.)

See the last subsection of this page for a better way to use this idea.

15.20. Backing Up and Restoring Data 145

https://www.rethinkdb.com/docs/backup/
https://gist.github.com/coffeemug/5894257
https://docs.mongodb.com/manual/core/backups/#backup-with-file-copies
https://docs.mongodb.com/manual/core/backups/#backup-with-file-copies

BigchainDB Server Documentation, Release 1.0.1

Incremental or Continuous Backup

Incremental backup is where backup happens on a regular basis (e.g. daily), and each one only records the changes
since the last backup.

Continuous backup might mean incremental backup on a very regular basis (e.g. every ten minutes), or it might mean
backup of every database operation as it happens. The latter is also called transaction logging or continuous archiving.

At the time of writing, RethinkDB didn’t have a built-in incremental or continuous backup capability, but the idea
was raised in RethinkDB issues #89 and #5890. On July 5, 2016, Daniel Mewes (of RethinkDB) wrote the following
comment on issue #5890: “We would like to add this feature [continuous backup], but haven’t started working on it
yet.”

To get a sense of what continuous backup might look like for RethinkDB, one can look at the continuous backup
options available for MongoDB. MongoDB, the company, offers continuous backup with Ops Manager (self-hosted)
or Cloud Manager (fully managed). Features include:

• It “continuously maintains backups, so if your MongoDB deployment experiences a failure, the most recent
backup is only moments behind...”

• It “offers point-in-time backups of replica sets and cluster-wide snapshots of sharded clusters. You can restore
to precisely the moment you need, quickly and safely.”

• “You can rebuild entire running clusters, just from your backups.”

• It enables, “fast and seamless provisioning of new dev and test environments.”

The MongoDB documentation has more details about how Ops Manager Backup works.

Considerations for BigchainDB:

• We’d like the cost of backup to be low. To get a sense of the cost, MongoDB Cloud Manager backup costed
$30 / GB / year prepaid. One thousand gigabytes backed up (i.e. about a terabyte) would cost 30 thousand US
dollars per year. (That’s just for the backup; there’s also a cost per server per year.)

• We’d like the backup to be decentralized, with no single point of control or single point of failure. (Note: some
file systems have a single point of failure. For example, HDFS has one Namenode.)

• We only care to back up blocks and votes, and once written, those never change. There are no updates or deletes,
just new blocks and votes.

Combining RethinkDB Replication with Storage Snapshots

Although it’s not advertised as such, RethinkDB’s built-in replication feature is similar to continous backup, except
the “backup” (i.e. the set of replica shards) is spread across all the nodes. One could take that idea a bit farther by
creating a set of backup-only servers with one full backup:

• Give all the original BigchainDB nodes (RethinkDB nodes) the server tag original. This is the default if you
used the RethinkDB config file suggested in the section titled Configure RethinkDB Server.

• Set up a group of servers running RethinkDB only, and give them the server tag backup. The backup servers
could be geographically separated from all the original nodes (or not; it’s up to the consortium to decide).

• Clients shouldn’t be able to read from or write to servers in the backup set.

• Send a RethinkDB reconfigure command to the RethinkDB cluster to make it so that the original set has the
same number of replicas as before (or maybe one less), and the backup set has one replica. Also, make sure
the primary_replica_tag='original' so that all primary shards live on the original nodes.

The RethinkDB documentation on sharding and replication has the details of how to set server tags and do RethinkDB
reconfiguration.

146 Chapter 15. Appendices

https://github.com/rethinkdb/rethinkdb/issues/89
https://github.com/rethinkdb/rethinkdb/issues/5890
https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/cloud
https://docs.opsmanager.mongodb.com/current/application/#backup
https://www.mongodb.com/blog/post/lower-mms-backup-prices-backing-mongodb-now-easier-and-more-affordable
https://www.mongodb.com/blog/post/lower-mms-backup-prices-backing-mongodb-now-easier-and-more-affordable
https://www.rethinkdb.com/docs/sharding-and-replication/

BigchainDB Server Documentation, Release 1.0.1

Once you’ve set up a set of backup-only RethinkDB servers, you could make a point-in-time snapshot of their storage
devices, as a form of backup.

You might want to disconnect the backup set from the original set first, and then wait for reads and writes in
the backup set to stop. (The backup set should have only one copy of each shard, so there’s no opportunity for
inconsistency between shards of the backup set.)

You will want to re-connect the backup set to the original set as soon as possible, so it’s able to catch up.

If something bad happens to the entire original BigchainDB cluster (including the backup set) and you need to restore
it from a snapshot, you can, but before you make BigchainDB live, you should 1) delete all entries in the backlog table,
2) delete all blocks after the last voted-valid block, 3) delete all votes on the blocks deleted in part 2, and 4) rebuild
the RethinkDB indexes.

NOTE: Sometimes snapshots are incremental. For example, Amazon EBS snapshots are incremental, meaning “only
the blocks on the device that have changed after your most recent snapshot are saved. This minimizes the time
required to create the snapshot and saves on storage costs.” [Emphasis added]

Licenses

Information about how the BigchainDB Server code and documentation are licensed can be found in the LI-
CENSES.md file of the bigchaindb/bigchaindb repository on GitHub.

Installing BigchainDB on LXC containers using LXD

Note: This page was contributed by an external contributor and is not actively maintained. We include it in
case someone is interested.

You can visit this link to install LXD (instructions here): LXD Install

(assumption is that you are using Ubuntu 14.04 for host/container)

Let us create an LXC container (via LXD) with the following command:

lxc launch ubuntu:14.04 bigchaindb

(ubuntu:14.04 - this is the remote server the command fetches the image from) (bigchaindb - is the name of the
container)

Below is the install.sh script you will need to install BigchainDB within your container.

Here is my install.sh:

#!/bin/bash
set -ex
export DEBIAN_FRONTEND=noninteractive
apt-get install -y wget
source /etc/lsb-release && echo "deb http://download.rethinkdb.com/apt $DISTRIB_
→˓CODENAME main" | sudo tee /etc/apt/sources.list.d/rethinkdb.list
wget -qO- https://download.rethinkdb.com/apt/pubkey.gpg | sudo apt-key add -
apt-get update
apt-get install -y rethinkdb python3-pip
pip3 install --upgrade pip wheel setuptools
pip install ptpython bigchaindb

Copy/Paste the above install.sh into the directory/path you are going to execute your LXD commands from (ie.
the host).

15.21. Licenses 147

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
https://github.com/bigchaindb/bigchaindb/blob/master/LICENSES.md
https://github.com/bigchaindb/bigchaindb/blob/master/LICENSES.md
https://linuxcontainers.org/lxd/getting-started-cli/

BigchainDB Server Documentation, Release 1.0.1

Make sure your container is running by typing:

lxc list

Now, from the host (and the correct directory) where you saved install.sh, run this command:

cat install.sh | lxc exec bigchaindb /bin/bash

If you followed the commands correctly, you will have successfully created an LXC container (using LXD) that can
get you up and running with BigchainDB in <5 minutes (depending on how long it takes to download all the packages).

148 Chapter 15. Appendices

Python Module Index

b
bigchaindb.backend, 116
bigchaindb.backend.admin, 122
bigchaindb.backend.changefeed, 117
bigchaindb.backend.connection, 116
bigchaindb.backend.query, 118
bigchaindb.backend.rethinkdb, 123
bigchaindb.backend.rethinkdb.admin, 124
bigchaindb.backend.rethinkdb.changefeed,

123
bigchaindb.backend.rethinkdb.connection,

123
bigchaindb.backend.rethinkdb.query, 123
bigchaindb.backend.rethinkdb.schema, 123
bigchaindb.backend.schema, 122
bigchaindb.backend.utils, 123
bigchaindb.commands, 126
bigchaindb.commands.bigchaindb, 126
bigchaindb.commands.utils, 126
bigchaindb.pipelines.block, 113
bigchaindb.pipelines.election, 115
bigchaindb.pipelines.stale, 115
bigchaindb.pipelines.vote, 114

149

BigchainDB Server Documentation, Release 1.0.1

150 Python Module Index

HTTP Routing Table

/api
GET /api/v1/assets, 75
GET /api/v1/assets?search={text_search},

75
GET /api/v1/assets?search={text_search}&limit={n_documents},

76
GET /api/v1/blocks, 79
GET /api/v1/blocks/{block_id}, 77
GET /api/v1/blocks?transaction_id={transaction_id}&status={UNDECIDED|VALID|INVALID},

79
GET /api/v1/outputs, 72
GET /api/v1/outputs?public_key={public_key},

72
GET /api/v1/outputs?public_key={public_key}&spent=false,

73
GET /api/v1/outputs?public_key={public_key}&spent=true,

73
GET /api/v1/statuses, 74
GET /api/v1/statuses?block_id={block_id},

75
GET /api/v1/statuses?transaction_id={transaction_id},

74
GET /api/v1/transactions, 67
GET /api/v1/transactions/{transaction_id},

66
GET /api/v1/transactions?asset_id={asset_id}&operation={CREATE|TRANSFER},

68
GET /api/v1/votes?block_id={block_id},

80
POST /api/v1/transactions, 70

151

BigchainDB Server Documentation, Release 1.0.1

152 HTTP Routing Table

Index

Symbols
__init__() (bigchaindb.backend.connection.Connection

method), 117
__init__() (bigchaindb.core.Bigchain method), 108

B
Bigchain (class in bigchaindb), 108
bigchaindb.backend (module), 116
bigchaindb.backend.admin (module), 122
bigchaindb.backend.changefeed (module), 117
bigchaindb.backend.connection (module), 116
bigchaindb.backend.query (module), 118
bigchaindb.backend.rethinkdb (module), 123
bigchaindb.backend.rethinkdb.admin (module), 124
bigchaindb.backend.rethinkdb.changefeed (module), 123
bigchaindb.backend.rethinkdb.connection (module), 123
bigchaindb.backend.rethinkdb.query (module), 123
bigchaindb.backend.rethinkdb.schema (module), 123
bigchaindb.backend.schema (module), 122
bigchaindb.backend.utils (module), 123
bigchaindb.commands (module), 126
bigchaindb.commands.bigchaindb (module), 126
bigchaindb.commands.utils (module), 126
bigchaindb.pipelines.block (module), 113
bigchaindb.pipelines.election (module), 115
bigchaindb.pipelines.stale (module), 115
bigchaindb.pipelines.vote (module), 114
block_election_status() (bigchaindb.Bigchain method),

112
BLOCK_INVALID (bigchaindb.Bigchain attribute), 109
BLOCK_UNDECIDED (bigchaindb.Bigchain attribute),

109
BLOCK_VALID (bigchaindb.Bigchain attribute), 109
BlockPipeline (class in bigchaindb.pipelines.block), 113

C
ChangeFeed (class in bigchaindb.backend.changefeed),

117

check_for_quorum() (bigchaindb.pipelines.election.Election
method), 115

check_transactions() (bigchaindb.pipelines.stale.StaleTransactionMonitor
method), 115

configure_bigchaindb() (in module
bigchaindb.commands.utils), 126

connect() (bigchaindb.backend.connection.Connection
method), 117

connect() (in module bigchaindb.backend.connection),
116

Connection (class in bigchaindb.backend.connection),
116

count_backlog() (in module bigchaindb.backend.query),
121

count_blocks() (in module bigchaindb.backend.query),
120

create() (bigchaindb.pipelines.block.BlockPipeline
method), 113

create_block() (bigchaindb.Bigchain method), 111
create_database() (in module

bigchaindb.backend.schema), 122
create_genesis_block() (bigchaindb.Bigchain method),

112
create_indexes() (in module

bigchaindb.backend.schema), 122
create_pipeline() (in module bigchaindb.pipelines.block),

114
create_pipeline() (in module bigchaindb.pipelines.stale),

116
create_pipeline() (in module bigchaindb.pipelines.vote),

115
create_tables() (in module bigchaindb.backend.schema),

122

D
delete_transaction() (bigchaindb.Bigchain method), 109
delete_transaction() (in module

bigchaindb.backend.query), 118
delete_tx() (bigchaindb.pipelines.block.BlockPipeline

method), 114

153

BigchainDB Server Documentation, Release 1.0.1

drop_database() (in module bigchaindb.backend.schema),
122

E
Election (class in bigchaindb.pipelines.election), 115

F
federation (bigchaindb.Bigchain attribute), 109
filter_tx() (bigchaindb.pipelines.block.BlockPipeline

method), 113

G
get_asset_by_id() (bigchaindb.Bigchain method), 110
get_asset_by_id() (in module bigchaindb.backend.query),

119
get_assets() (bigchaindb.Bigchain method), 112
get_assets() (in module bigchaindb.backend.query), 120
get_block() (bigchaindb.Bigchain method), 110
get_block() (in module bigchaindb.backend.query), 120
get_blocks_status_containing_tx() (bigchaindb.Bigchain

method), 110
get_blocks_status_from_transaction() (in module

bigchaindb.backend.query), 119
get_changefeed() (in module

bigchaindb.backend.changefeed), 118
get_changefeed() (in module

bigchaindb.backend.rethinkdb.changefeed),
124

get_changefeed() (in module bigchaindb.pipelines.vote),
115

get_config() (in module
bigchaindb.backend.rethinkdb.admin), 124

get_genesis_block() (in module
bigchaindb.backend.query), 121

get_last_voted_block() (bigchaindb.Bigchain method),
112

get_last_voted_block_id() (in module
bigchaindb.backend.query), 121

get_new_blocks_feed() (in module
bigchaindb.backend.query), 121

get_outputs_filtered() (bigchaindb.Bigchain method), 111
get_owned_ids() (bigchaindb.Bigchain method), 111
get_owned_ids() (in module bigchaindb.backend.query),

119
get_spending_transactions() (in module

bigchaindb.backend.query), 119
get_spent() (bigchaindb.Bigchain method), 111
get_spent() (in module bigchaindb.backend.query), 119
get_stale_transactions() (bigchaindb.Bigchain method),

109
get_stale_transactions() (in module

bigchaindb.backend.query), 118
get_status() (bigchaindb.Bigchain method), 110
get_transaction() (bigchaindb.Bigchain method), 110

get_transaction_from_backlog() (in module
bigchaindb.backend.query), 119

get_transaction_from_block() (in module
bigchaindb.backend.query), 119

get_transactions_filtered() (bigchaindb.Bigchain
method), 111

get_txids_filtered() (in module
bigchaindb.backend.query), 121

get_votes_by_block_id() (in module
bigchaindb.backend.query), 119

get_votes_by_block_id_and_voter() (in module
bigchaindb.backend.query), 120

get_votes_for_blocks_by_voter() (in module
bigchaindb.backend.query), 120

H
has_previous_vote() (bigchaindb.Bigchain method), 112

I
init_database() (in module bigchaindb.backend.schema),

122
input_on_stderr() (in module

bigchaindb.commands.utils), 126
is_new_transaction() (bigchaindb.Bigchain method), 109

M
ModuleDispatchRegistrationError, 123
mongodb_host() (in module bigchaindb.commands.utils),

127

P
prepare_genesis_block() (bigchaindb.Bigchain method),

112

R
reassign_transaction() (bigchaindb.Bigchain method),

109
reassign_transactions() (bigchaindb.pipelines.stale.StaleTransactionMonitor

method), 116
reconfigure() (in module

bigchaindb.backend.rethinkdb.admin), 124
requeue_transactions() (bigchaindb.pipelines.election.Election

method), 115
RethinkDBChangeFeed (class in

bigchaindb.backend.rethinkdb.changefeed),
123

RethinkDBConnection (class in
bigchaindb.backend.rethinkdb.connection),
123

run() (bigchaindb.backend.connection.Connection
method), 117

run() (bigchaindb.backend.rethinkdb.connection.RethinkDBConnection
method), 123

154 Index

BigchainDB Server Documentation, Release 1.0.1

run_changefeed() (bigchaindb.backend.changefeed.ChangeFeed
method), 118

run_changefeed() (in module
bigchaindb.backend.rethinkdb.changefeed),
123

run_configure() (in module
bigchaindb.commands.bigchaindb), 126

run_drop() (in module
bigchaindb.commands.bigchaindb), 126

run_export_my_pubkey() (in module
bigchaindb.commands.bigchaindb), 126

run_forever() (bigchaindb.backend.changefeed.ChangeFeed
method), 117

run_init() (in module bigchaindb.commands.bigchaindb),
126

run_show_config() (in module
bigchaindb.commands.bigchaindb), 126

run_start() (in module
bigchaindb.commands.bigchaindb), 126

S
set_replicas() (in module

bigchaindb.backend.rethinkdb.admin), 125
set_shards() (in module

bigchaindb.backend.rethinkdb.admin), 125
StaleTransactionMonitor (class in

bigchaindb.pipelines.stale), 115
start() (in module bigchaindb.commands.utils), 127
start() (in module bigchaindb.pipelines.block), 114
start() (in module bigchaindb.pipelines.stale), 116
start() (in module bigchaindb.pipelines.vote), 115
start_logging_process() (in module

bigchaindb.commands.utils), 126
start_rethinkdb() (in module bigchaindb.commands.utils),

127

T
TABLES (in module bigchaindb.backend.schema), 122
text_search() (bigchaindb.Bigchain method), 112
text_search() (in module bigchaindb.backend.query), 121
tx_collector() (in module bigchaindb.pipelines.block),

114
TX_IN_BACKLOG (bigchaindb.Bigchain attribute), 109
TX_UNDECIDED (bigchaindb.Bigchain attribute), 109
TX_VALID (bigchaindb.Bigchain attribute), 109

U
ungroup() (bigchaindb.pipelines.vote.Vote method), 114
unwind_block_transactions() (in module

bigchaindb.backend.rethinkdb.query), 123
update_transaction() (in module

bigchaindb.backend.query), 118

V
validate_block() (bigchaindb.Bigchain method), 111
validate_transaction() (bigchaindb.Bigchain method), 109
validate_tx() (bigchaindb.pipelines.block.BlockPipeline

method), 113
validate_tx() (bigchaindb.pipelines.vote.Vote method),

114
Vote (class in bigchaindb.pipelines.vote), 114
vote() (bigchaindb.Bigchain method), 112
vote() (bigchaindb.pipelines.vote.Vote method), 114

W
write() (bigchaindb.pipelines.block.BlockPipeline

method), 113
write_assets() (bigchaindb.Bigchain method), 112
write_assets() (in module bigchaindb.backend.query),

120
write_block() (bigchaindb.Bigchain method), 112
write_block() (in module bigchaindb.backend.query), 120
write_transaction() (bigchaindb.Bigchain method), 109
write_transaction() (in module

bigchaindb.backend.query), 118
write_vote() (bigchaindb.Bigchain method), 112
write_vote() (bigchaindb.pipelines.vote.Vote method),

115
write_vote() (in module bigchaindb.backend.query), 121

Index 155

	Introduction
	Quickstart
	Production Nodes
	Clusters
	Production Deployment Template
	Develop & Test BigchainDB Server
	Settings & CLI
	The HTTP Client-Server API
	The WebSocket Event Stream API
	Drivers & Tools
	Data Models
	Transaction Schema
	Vote Schema
	Release Notes
	Appendices
	Python Module Index
	HTTP Routing Table

